Skip to main content

Advertisement

Log in

SiC-based materials produced by explosive compaction of powders without sintering

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The explosive compaction technique achieves a considerably higher pressure compared to conventional powder metallurgy. This study demonstrates the fundamental possibility of obtaining SiC-based materials by explosive compaction without sintering. It has been determined that an increase in the compacting pressure from 12 to 16.5 GPa and a decrease in the titanium binder content from 50 to 20 vol.% are accompanied by a decrease in the compacted residual porosity of the material from 7 to 2%. In this case, the best compaction is achieved at a lower metal binder content. Microstructure analysis of the obtained materials showed that explosive compaction allows titanium particles to retain their size and form isolated inclusions in a continuous silicon carbide matrix. The initially splinter-shaped particles of the matrix transform, which ensures tight contact between them. To form strong boundaries between powder mix components at the explosive compaction stage, the loading modes should provide heating of the material during shock wave compression to above 780 °C. As a result, the hardness of the material containing 20 vol.% titanium reached 1300 HV. To retain the initial phase composition of silicon carbide and titanium powder mixtures during explosive compaction, the upper temperature limit should be 840 °C. The loading modes accompanied by heating to a higher temperature initiate a chemical interaction between the powder mix components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. O.A. Ageev, A.E. Belyaev, Silicon Carbide: Technology, Properties, Application (ISMA, Khar’kov, 2010)

    Google Scholar 

  2. R. Riedel, Handbook of Ceramic Hard Materials (Wiley–VCH, Weinheim, 2000)

    Book  Google Scholar 

  3. R.A. Alliegro, Processing and fabrication of non-hot-pressed silicon carbide, Ceram. High Perform. Appl. 253–263 (1974)

  4. J. Kriegesmann, Interceram. 37 (1988)

  5. M. Singh, J. Mater. Sci. (1998). https://doi.org/10.1023/A:1004489712447

    Article  Google Scholar 

  6. P. Sangsuwan, J.A. Orejas, J.E. Gatica, S.N. Tewari, Ind. Eng. Chem. Res. (2001). https://doi.org/10.1021/ie001029e

    Article  Google Scholar 

  7. Y.X. Wang, Sh.H. Tan, D.L. Jiang, Ceram. Int. (2004). https://doi.org/10.1016/S0272-8842(03)00128-7

    Article  Google Scholar 

  8. E. Scafe, G. Giunta, L. Fabbri, L. Direse, J. Eur. Ceram. Soc. (1996). https://doi.org/10.1016/0955-2219(95)00199-9

    Article  Google Scholar 

  9. L.N. D’yachkova, E.V. Zvonarev, V.M. Shelekhina, M.A. Isupov, J. Eng. Phys. Thermophys. 70, 258–261 (1997)

    Article  Google Scholar 

  10. V.P. Paranosenkov, A.A. Chikina, M.A. Andreev, Ogneup. Tekh. Keram. 7 (2006)

  11. V.P. Paranosenkov, A.A. Chikina, I.L. Shkarupa, Ogneup. Tekh. Keram. 2 (2004)

  12. A.P. Garshin, S.G. Chulkin, Reaction-sintered Silicon Carbide Materials for Structural Purposes (Izd. Politekh. Univ, St. Petersburg, 2006)

    Google Scholar 

  13. A.P. Garshin, Yu.N. Vil'k, Ogneup. Tekh. Keram. 8 (1996)

  14. M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (Marcel Dekker Inc, New York-Basel, 2003)

    Google Scholar 

  15. J.Y. Kim, Y.W. Kim, J.G. Lee, K.S. Cho, J. Mater. Sci. (1999). https://doi.org/10.1023/A:1004585910170

    Article  Google Scholar 

  16. G.D. Zhan, R.J. Xie, M. Mitomo, Y.W. Kim, J. Am. Ceram. Soc. (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00773.x

    Article  Google Scholar 

  17. Y.W. Kim, Y.I. Lee, M. Mitomo, J. Ceram. Soc. Jpn. (2006). https://doi.org/10.2109/jcersj.114.681

    Article  Google Scholar 

  18. K. Tanaka, Y. Akiniwa, T. Nomura, Y. Sakaida, Trans. Jpn. Soc. Mech. Eng. 65, 2385–2392 (1999)

    Article  Google Scholar 

  19. H.J. Choi, Y.W. Kim, M. Mitomo, T. Nishimura, Scr. Mater. (2004). https://doi.org/10.1016/j.scriptamat.2004.02.008

    Article  Google Scholar 

  20. D.J. Kim, H. Kim, J. Mater. Sci. Lett. (1998). https://doi.org/10.1023/A:1006513402141

    Article  Google Scholar 

  21. R. Vassen, D. Stover, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02127.x

    Article  Google Scholar 

  22. Y.K. Jeong, A. Nakahira, K. Niihara, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02286.x

    Article  Google Scholar 

  23. M. Gadzira, G. Gnesin, O. Mykhaylyk, V. Brutin, O. Andreyev, Mater. Lett. (1998). https://doi.org/10.1016/S0167-577X(97)00263-2

    Article  Google Scholar 

  24. M. Gadzira, G. Gnesin, O. Mykhaylyk, O. Andreyev, Diam. Rel. Mater. (1998). https://doi.org/10.1016/S0925-9635(98)00201-5

    Article  Google Scholar 

  25. N.F. Gadzyra, G.G. Gnesin, A.A. Mikhailik, A.A. Shulzhenko, A.A. Bochechka, J. Superhard Mater. 23 (2001)

  26. Y. Shinoda, T. Nagano, H. Gu, F. Wakai, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02178.x

    Article  Google Scholar 

  27. V.I. Lysak, A.V. Krokhalev, S.V. Kuz’min, V.D. Rogozin, A.M. Kaunov, Explosion Pressing of Powders (Mashinostroenie, Moscow, 2015)

    Google Scholar 

  28. R.A. Pruemmer, T. BalakrishnaBlat, K. Siva Kumar, K. Hokamoto, Explosive Compaction of Powders and Composites (Science Publishers, Enfield, 2006)

    Book  Google Scholar 

  29. A.V. Krokhalev, V.O. Kharlamov, S.V. Kuzmin, V.I. Lysak, Russ. J. Non-Ferr. Met. (2018). https://doi.org/10.3103/S1067821218040107

    Article  Google Scholar 

  30. I.V. Yakovlev, V.M. Ogolikhin, S.D. Shemelin, Vestn. Permsk. Natl. Issled. Politech. Univ. Mashinostr. Materialoved. 14 (2012)

  31. A.E. Buzyurkin, E.I. Kraus, Y.L. Lukyanov, J. Phys. 653, 012036 (2015). https://doi.org/10.1088/1742-6596/653/1/012036

    Article  CAS  Google Scholar 

  32. N.P. Padture, J. Am. Ceram. Soc. (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07024.x

    Article  Google Scholar 

  33. S. Baud, F. Thevenot, Mater. Chem. Phys. (2001). https://doi.org/10.1016/S0254-0584(00)00435-1

    Article  Google Scholar 

  34. A.V. Krokhalev, V.O. Kharlamov, S.V. Kuz’min, V.I. Lysak, V.V. Pai, Combust. Explos. Shock Waves (2019). https://doi.org/10.1134/S0010508219040178

    Article  Google Scholar 

  35. A.V. Krokhalev, V.O. Kharlamov, M.A. Tupitsin, S.V. Kuz’min, V.I. Lysak, Russ. J. Non-Ferr. Met. (2018). https://doi.org/10.3103/S1067821218050073

    Article  Google Scholar 

  36. L.Ya. Gurvich, A.D. Zhirnov Prot. Met. 32 (1996)

  37. A.V. Krokhalev, V.O. Kharlamov, V.I. Lysak, S.V. Kuz’min, J. Mater. Sci. (2017). https://doi.org/10.1007/s10853-017-1208-1

    Article  Google Scholar 

  38. F. Mubarok, N. Espallargas, Tribol. Int. (2015). https://doi.org/10.1016/j.triboint.2014.11.027

    Article  Google Scholar 

  39. J.F. Li, J.Q. Huang, S.H. Tan, Z.M. Cheng, C.X. Ding, Wear (1998). https://doi.org/10.1016/S0043-1648(98)00217-8

    Article  Google Scholar 

  40. Q. Wang, Z. Fei, Lubricants (2017). https://doi.org/10.3390/lubricants5010005

    Article  Google Scholar 

  41. G. Liu, X. Zhang, J. Yang, G. Qiao, J. Adv. Ceram. (2019). https://doi.org/10.1007/s40145-018-0297-x

    Article  Google Scholar 

  42. Yu.L. Krasulin, G.Z. Nazarov, Pressure Micro Welding (Metallurgiya, Moscow, 1976)

    Google Scholar 

  43. MYu. Bal’shin, Scientific Foundations of Powder Metallurgy and Fiber Metallurgy (Metallurgiya, Moscow, 1972)

    Google Scholar 

  44. V.I. Lysak, S.V. Kuz’min, A.V. Krokhalev, B.A. Grinberg, Phys. Met. Metallogr. (2013). https://doi.org/10.1134/S0031918X13110069

    Article  Google Scholar 

  45. J. Song, A. Kostka, M. Veehmayer, D. Raabe, Mater. Sci. Eng. A (2011). https://doi.org/10.1016/j.msea.2010.11.092

    Article  Google Scholar 

  46. L.S. Sigl, H.J. Kleebe, J. Core, Am. Ceram. Soc. (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03677.x

    Article  Google Scholar 

  47. V.D. Rogozin, Explosive Treatment of Powder Materials (Politekhnik, Volgograd, 2002)

    Google Scholar 

Download references

Funding

No funding was received to assist in the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Kharlamov.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krokhalev, A., Kharlamov, V., Kuz’min, S. et al. SiC-based materials produced by explosive compaction of powders without sintering. J. Korean Ceram. Soc. 60, 845–855 (2023). https://doi.org/10.1007/s43207-023-00312-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00312-6

Keywords

Navigation