Abstract
The explosive compaction technique achieves a considerably higher pressure compared to conventional powder metallurgy. This study demonstrates the fundamental possibility of obtaining SiC-based materials by explosive compaction without sintering. It has been determined that an increase in the compacting pressure from 12 to 16.5 GPa and a decrease in the titanium binder content from 50 to 20 vol.% are accompanied by a decrease in the compacted residual porosity of the material from 7 to 2%. In this case, the best compaction is achieved at a lower metal binder content. Microstructure analysis of the obtained materials showed that explosive compaction allows titanium particles to retain their size and form isolated inclusions in a continuous silicon carbide matrix. The initially splinter-shaped particles of the matrix transform, which ensures tight contact between them. To form strong boundaries between powder mix components at the explosive compaction stage, the loading modes should provide heating of the material during shock wave compression to above 780 °C. As a result, the hardness of the material containing 20 vol.% titanium reached 1300 HV. To retain the initial phase composition of silicon carbide and titanium powder mixtures during explosive compaction, the upper temperature limit should be 840 °C. The loading modes accompanied by heating to a higher temperature initiate a chemical interaction between the powder mix components.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
O.A. Ageev, A.E. Belyaev, Silicon Carbide: Technology, Properties, Application (ISMA, Khar’kov, 2010)
R. Riedel, Handbook of Ceramic Hard Materials (Wiley–VCH, Weinheim, 2000)
R.A. Alliegro, Processing and fabrication of non-hot-pressed silicon carbide, Ceram. High Perform. Appl. 253–263 (1974)
J. Kriegesmann, Interceram. 37 (1988)
M. Singh, J. Mater. Sci. (1998). https://doi.org/10.1023/A:1004489712447
P. Sangsuwan, J.A. Orejas, J.E. Gatica, S.N. Tewari, Ind. Eng. Chem. Res. (2001). https://doi.org/10.1021/ie001029e
Y.X. Wang, Sh.H. Tan, D.L. Jiang, Ceram. Int. (2004). https://doi.org/10.1016/S0272-8842(03)00128-7
E. Scafe, G. Giunta, L. Fabbri, L. Direse, J. Eur. Ceram. Soc. (1996). https://doi.org/10.1016/0955-2219(95)00199-9
L.N. D’yachkova, E.V. Zvonarev, V.M. Shelekhina, M.A. Isupov, J. Eng. Phys. Thermophys. 70, 258–261 (1997)
V.P. Paranosenkov, A.A. Chikina, M.A. Andreev, Ogneup. Tekh. Keram. 7 (2006)
V.P. Paranosenkov, A.A. Chikina, I.L. Shkarupa, Ogneup. Tekh. Keram. 2 (2004)
A.P. Garshin, S.G. Chulkin, Reaction-sintered Silicon Carbide Materials for Structural Purposes (Izd. Politekh. Univ, St. Petersburg, 2006)
A.P. Garshin, Yu.N. Vil'k, Ogneup. Tekh. Keram. 8 (1996)
M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (Marcel Dekker Inc, New York-Basel, 2003)
J.Y. Kim, Y.W. Kim, J.G. Lee, K.S. Cho, J. Mater. Sci. (1999). https://doi.org/10.1023/A:1004585910170
G.D. Zhan, R.J. Xie, M. Mitomo, Y.W. Kim, J. Am. Ceram. Soc. (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00773.x
Y.W. Kim, Y.I. Lee, M. Mitomo, J. Ceram. Soc. Jpn. (2006). https://doi.org/10.2109/jcersj.114.681
K. Tanaka, Y. Akiniwa, T. Nomura, Y. Sakaida, Trans. Jpn. Soc. Mech. Eng. 65, 2385–2392 (1999)
H.J. Choi, Y.W. Kim, M. Mitomo, T. Nishimura, Scr. Mater. (2004). https://doi.org/10.1016/j.scriptamat.2004.02.008
D.J. Kim, H. Kim, J. Mater. Sci. Lett. (1998). https://doi.org/10.1023/A:1006513402141
R. Vassen, D. Stover, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02127.x
Y.K. Jeong, A. Nakahira, K. Niihara, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02286.x
M. Gadzira, G. Gnesin, O. Mykhaylyk, V. Brutin, O. Andreyev, Mater. Lett. (1998). https://doi.org/10.1016/S0167-577X(97)00263-2
M. Gadzira, G. Gnesin, O. Mykhaylyk, O. Andreyev, Diam. Rel. Mater. (1998). https://doi.org/10.1016/S0925-9635(98)00201-5
N.F. Gadzyra, G.G. Gnesin, A.A. Mikhailik, A.A. Shulzhenko, A.A. Bochechka, J. Superhard Mater. 23 (2001)
Y. Shinoda, T. Nagano, H. Gu, F. Wakai, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02178.x
V.I. Lysak, A.V. Krokhalev, S.V. Kuz’min, V.D. Rogozin, A.M. Kaunov, Explosion Pressing of Powders (Mashinostroenie, Moscow, 2015)
R.A. Pruemmer, T. BalakrishnaBlat, K. Siva Kumar, K. Hokamoto, Explosive Compaction of Powders and Composites (Science Publishers, Enfield, 2006)
A.V. Krokhalev, V.O. Kharlamov, S.V. Kuzmin, V.I. Lysak, Russ. J. Non-Ferr. Met. (2018). https://doi.org/10.3103/S1067821218040107
I.V. Yakovlev, V.M. Ogolikhin, S.D. Shemelin, Vestn. Permsk. Natl. Issled. Politech. Univ. Mashinostr. Materialoved. 14 (2012)
A.E. Buzyurkin, E.I. Kraus, Y.L. Lukyanov, J. Phys. 653, 012036 (2015). https://doi.org/10.1088/1742-6596/653/1/012036
N.P. Padture, J. Am. Ceram. Soc. (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07024.x
S. Baud, F. Thevenot, Mater. Chem. Phys. (2001). https://doi.org/10.1016/S0254-0584(00)00435-1
A.V. Krokhalev, V.O. Kharlamov, S.V. Kuz’min, V.I. Lysak, V.V. Pai, Combust. Explos. Shock Waves (2019). https://doi.org/10.1134/S0010508219040178
A.V. Krokhalev, V.O. Kharlamov, M.A. Tupitsin, S.V. Kuz’min, V.I. Lysak, Russ. J. Non-Ferr. Met. (2018). https://doi.org/10.3103/S1067821218050073
L.Ya. Gurvich, A.D. Zhirnov Prot. Met. 32 (1996)
A.V. Krokhalev, V.O. Kharlamov, V.I. Lysak, S.V. Kuz’min, J. Mater. Sci. (2017). https://doi.org/10.1007/s10853-017-1208-1
F. Mubarok, N. Espallargas, Tribol. Int. (2015). https://doi.org/10.1016/j.triboint.2014.11.027
J.F. Li, J.Q. Huang, S.H. Tan, Z.M. Cheng, C.X. Ding, Wear (1998). https://doi.org/10.1016/S0043-1648(98)00217-8
Q. Wang, Z. Fei, Lubricants (2017). https://doi.org/10.3390/lubricants5010005
G. Liu, X. Zhang, J. Yang, G. Qiao, J. Adv. Ceram. (2019). https://doi.org/10.1007/s40145-018-0297-x
Yu.L. Krasulin, G.Z. Nazarov, Pressure Micro Welding (Metallurgiya, Moscow, 1976)
MYu. Bal’shin, Scientific Foundations of Powder Metallurgy and Fiber Metallurgy (Metallurgiya, Moscow, 1972)
V.I. Lysak, S.V. Kuz’min, A.V. Krokhalev, B.A. Grinberg, Phys. Met. Metallogr. (2013). https://doi.org/10.1134/S0031918X13110069
J. Song, A. Kostka, M. Veehmayer, D. Raabe, Mater. Sci. Eng. A (2011). https://doi.org/10.1016/j.msea.2010.11.092
L.S. Sigl, H.J. Kleebe, J. Core, Am. Ceram. Soc. (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03677.x
V.D. Rogozin, Explosive Treatment of Powder Materials (Politekhnik, Volgograd, 2002)
Funding
No funding was received to assist in the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest regarding the publication of this article.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Krokhalev, A., Kharlamov, V., Kuz’min, S. et al. SiC-based materials produced by explosive compaction of powders without sintering. J. Korean Ceram. Soc. 60, 845–855 (2023). https://doi.org/10.1007/s43207-023-00312-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43207-023-00312-6