Skip to main content
Log in

Improving the electrical properties of Er-doped CeO2: effect of sintering aids CaO, MgO, and TiO2 on conductivity

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This research reports the synthesis, characterization, and electrical properties of the systems EryCe1−yO2−δ (y = 0.05, 0.1, and 0.15), and the effect of the incorporation of sintering aids (2 wt.% of CaO, MgO, and TiO2) on the electrical properties of the composition Er0.1Ce0.9O1.95, to be used as ceramic solid electrolytes in low-temperature solid oxide fuel cells (LT-SOFC). All EryCe1−yO2−δ samples were obtained by mechanochemistry (20 h of milling) and characterized by XRD. The morphology of the pure sintered compositions and with the incorporation of sintering aids (sintered at 1200 °C) was evaluated by FE-SEM. Electrical properties as a function of temperature (200–650 °C) and frequency (100 Hz–1 MHz) were evaluated by impedance spectroscopy. It reveals an increase of bulk ionic conductivity for higher contents of Er, as the number of oxygen vacancies increases. The higher value of conductivity (6.7 × 10–3 S cm−1) at 650 °C was for the composition Er0.15Ce0.85O1.925, while the ionic conductivity of Er0.1Ce0.9O1.95 at 650 °C increased from 2.68 × 10–3 S cm−1 to a maximum of 1.54 × 10–2 S cm−1 with the incorporation of CaO as additive. These improvements in bulk ionic conductivities can contribute to the development of more efficient electrolytes for the LT-SOFC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated during this research are available from the corresponding author on reasonable request.

References

  1. S.Z. Golkhatmi, M.I. Asghar, Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2022.112339

    Article  Google Scholar 

  2. E.D. Wachsman, K.T. Lee, Science (2011). https://doi.org/10.1126/science.1204090

    Article  Google Scholar 

  3. B. Singh, S. Ghosh, S. Aich, B. Roy, J. Power Sources (2017). https://doi.org/10.1016/j.jpowsour.2016.11.019.J.B

    Article  Google Scholar 

  4. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog. Mater. Sci. (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  Google Scholar 

  5. J.A. Labrincha, J.R. Frade, F.M.B. Marques, J. Mater. Sci. (1993). https://doi.org/10.1007/BF00353183

    Article  Google Scholar 

  6. A. Mitterdorfer, L.J. Gauckler, MRS Proc. (1996). https://doi.org/10.1557/PROC-453-525

    Article  Google Scholar 

  7. N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Upadhyay, O. Parkash, J. Alloy Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.12.015

    Article  Google Scholar 

  8. J.M. Ralph, C. Rossignol, R. Kumar, J. Electrochem. Soc. (2003). https://doi.org/10.1149/1.1617300

    Article  Google Scholar 

  9. L. Zhang, J. Shan, Q. Wang, J. Alloy Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.08.232

    Article  Google Scholar 

  10. S. Ahmed, W.W. Kazmi, A. Hussain, M.Z. Khan, S. Bibi, M. Saleem, R.H. Song, Z. Sajid, A. Ullah, M.K. Khan, J. Korean Ceram. Soc. (2022). https://doi.org/10.1007/s43207-022-00261-6

    Article  Google Scholar 

  11. V. Dusastre, J.A. Kilner, Solid State Ionics (1999). https://doi.org/10.1016/S0167-2738(99)00108-3

    Article  Google Scholar 

  12. E.Y. Pikalova, V.I. Maragou, A.K. Demin, A.A. Murashkina, P.E. Tsiakaras, Solid State Ionics (2008). https://doi.org/10.1016/j.ssi.2007.12.086

    Article  Google Scholar 

  13. M. Mogensen, N.M. Sammes, J.A. Tompsett, Solid State Ionics (2000). https://doi.org/10.1016/S0167-2738(99)00318-5

    Article  Google Scholar 

  14. H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, J. Appl. Electrochem. (1998). https://doi.org/10.1007/BF01022246

    Article  Google Scholar 

  15. K. Schwarz, Proc. Natl. Acad. Sci. U.S.A. (2006). https://doi.org/10.1073/pnas.0600327103

    Article  Google Scholar 

  16. D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Proc. Natl. Acad. Sci. U.S.A. (2006). https://doi.org/10.1073/pnas.0509537103

    Article  Google Scholar 

  17. H. Yahiro, K. Eguchi, H. Arai, Solid State Ionics (1989). https://doi.org/10.1016/0167-2738(89)90061-1

    Article  Google Scholar 

  18. D.E. Puente-Martínez, J.A. Díaz-Guillén, S.M. Montemayor, J.C. Díaz-Guillén, O. Burciaga-Díaz, M.E. Bazaldúa-Medellín, M.R. Diaz-Guillen, A.F. Fuentes, Int. J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2019.11.032

    Article  Google Scholar 

  19. M. Kahlaoui, S. Chefi, A. Inoubli, A. Madani, C. Chefi, Ceram Int. (2013). https://doi.org/10.1016/J.CERAMINT.2012.10.230

    Article  Google Scholar 

  20. A. Arabacı, M.F. Öksüzömer, Ceram Int. (2012). https://doi.org/10.1016/j.ceramint.2012.05.030

    Article  Google Scholar 

  21. N. Cioatera, V. Parvulescu, A. Rolle, R.N. Vannier, Ceram. Int. (2012). https://doi.org/10.1016/J.CERAMINT.2012.03.058

    Article  Google Scholar 

  22. A. Gondolini, E. Mercadelli, A. Sanson, S. Albonetti, L. Doubova, S. Boldrini, Ceram. Int. (2011). https://doi.org/10.1016/j.ceramint.2011.01.010

    Article  Google Scholar 

  23. K. Venkataramana, C. Madhuri, C. Madhusudan, A. Bhogi, B. Srinivas, C.V. Reddy, Mater. Sci. Semicond. Process. (2022). https://doi.org/10.1016/j.mssp.2022.106495

    Article  Google Scholar 

  24. F. Tietz, Solid Oxide Fuel Cells Encycl. Mater. Sci. Technol. (2008). https://doi.org/10.1016/B978-008043152-9.02210-7

    Article  Google Scholar 

  25. K.C. Anjaneya, M.P. Singh, J. Alloy Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.10.175

    Article  Google Scholar 

  26. N. Momin, J. Manjanna, L. D’Souza, S.T. Aruna, S.S. Kumar, J. Alloy Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.163012

    Article  Google Scholar 

  27. G.B. Jung, T.J. Huang, M.H. Huang, C.L. Chang, J. Mater. Sci. (2001). https://doi.org/10.1023/A:1012964307388

    Article  Google Scholar 

  28. E.Y. Pikalova, A.A. Murashkina, V.I. Maragou, A.K. Demin, V.N. Strekalovsky, P.E. Tsiakaras, Int. J. Hydrog. Energy (2011). https://doi.org/10.1016/j.ijhydene.2011.01.132

    Article  Google Scholar 

  29. K. Yan, Q. Zhen, X. Song, Rare Met. (2007). https://doi.org/10.1016/S1001-0521(07)60221-6

    Article  Google Scholar 

  30. S. Zha, C. Xia, G. Meng, J. Power Sources (2003). https://doi.org/10.1016/S0378-7753(02)00625-0

    Article  Google Scholar 

  31. M.F. Han, Z.B. Yang, Z. Liu, H.R. Le, Key Eng. Mater. (2010). https://doi.org/10.4028/www.scientific.net/kem.434-435.705

    Article  Google Scholar 

  32. G. Dell’Agli, L. Spiridigliozzi, M. Pansini, G. Accardo, S.P. Yoon, D. Frattini, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.06.269

    Article  Google Scholar 

  33. M. Stojmenović, S. Bošković, M. Žunić, B. Babić, B. Matović, D. Bajuk-Bogdanović, S. Mentus, Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.01.036

    Article  Google Scholar 

  34. M. Anwar, M. Ali, A. Muchtar, M.R. Somalu, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2018.12.023

    Article  Google Scholar 

  35. C.E. Jeyanthi, R. Siddheswaran, R. Medlín, M.K. Chinnu, R. Jayavel, K. Rajarajan, J. Alloy Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.05.208

    Article  Google Scholar 

  36. S. Kuharuangrong, J. Power Sources (2007). https://doi.org/10.1016/j.jpowsour.2007.05.104

    Article  Google Scholar 

  37. H. Wang, R. Du, H. Zhai, G. Xi, F. Wu, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.09.256

    Article  Google Scholar 

  38. A.F. Fuentes, L. Takacs, J. Mater. Sci. (2013). https://doi.org/10.1007/s10853-012-6909-x

    Article  Google Scholar 

  39. I. Shajahan, H.P. Dasari, M.B. Saidutta, Int. J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.06.163

    Article  Google Scholar 

  40. Y.C. Zhou, M.N. Rahaman, J. Mater. Res. (1993). https://doi.org/10.1557/JMR.1993.1680

    Article  Google Scholar 

  41. R.D. Shannon, Acta Crystallogr. (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  42. J.D. Nicholas, C. Lutgard, D. Jonghe, Solid State Ionics (2007). https://doi.org/10.1016/j.ssi.2007.05.019

    Article  Google Scholar 

  43. L.A. Villas-Boas, F.M.L. Figueiredo, D.P.F. De Souza, F.M.B. Marques, Solid State Ionics (2014). https://doi.org/10.1016/j.ssi.2013.11.002

    Article  Google Scholar 

  44. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983)

    Google Scholar 

  45. G.F. Harrington, L. Sun, B. Yildiz, K. Sasaki, N.H. Perry, H.L. Tuller, Acta Mater. (2019). https://doi.org/10.1016/j.actamat.2018.12.058

    Article  Google Scholar 

  46. H. Ozlu Torun, S. Cakar, J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7189-8

    Article  Google Scholar 

  47. M. Filal, C. Petot, M. Mokchah, C. Chateau, J.L. Carpentier, Solid State Ionics (1995). https://doi.org/10.1016/0167-2738(95)00137-U

    Article  Google Scholar 

  48. D.W. Strickler, W.G. Carlson, J. Am. Ceram. Soc. (1964). https://doi.org/10.1111/j.1151-2916.1964.tb14368.x

    Article  Google Scholar 

  49. F.M.L. Figueiredo, F.M.B. Marques, Wires Energy Environ. (2013). https://doi.org/10.1002/wene.23

    Article  Google Scholar 

  50. Y.L. Kuo, Y.M. Su, Micro Nano Lett. (2012). https://doi.org/10.1049/mnl.2012.0178

    Article  Google Scholar 

  51. Z. Tianshu, P. Hing, H. Huang, J. Kilner, J. Mater. Sci. (2002). https://doi.org/10.1023/A:1014362000128

    Article  Google Scholar 

  52. W. Zając, L. Suescun, K. Świerczek, J. Molenda, J. Power Sources (2009). https://doi.org/10.1016/j.jpowsour.2008.12.020

    Article  Google Scholar 

  53. P.S. Cho, S.B. Lee, D.S. Kim, J.H. Lee, D.Y. Kim, H.M. Park, ECS Solid State Lett. (2006). https://doi.org/10.1149/1.2214235

    Article  Google Scholar 

  54. D. Pérez-Coll, P. Núñez, J.C.C. Abrantes, D.P. Fagg, V.V. Kharton, J.R. Frade, Solid State Ionics (2005). https://doi.org/10.1016/j.ssi.2005.06.023

    Article  Google Scholar 

  55. P.C. Cajas-Daza, J.L. Almeida-Ferreira, J.A. Araujo, J.A. Euzébio-Paiva, R.A. Muñoz-Meneses, C.R. Moreira da Silva, Bol. Soc. Esp. Ceram. Vidrio (2022). https://doi.org/10.1016/j.bsecv.2021.04.003

    Article  Google Scholar 

  56. S. Ramesh, M. Naganathappa, J. Vemula, Bol. Soc. Esp. Ceram. (2022). https://doi.org/10.1016/j.bsecv.2021.03.001

    Article  Google Scholar 

  57. L. Mathur, Y. Namgung, H. Kim, S.J. Song, J. Korean Ceram. Soc. (2023). https://doi.org/10.1007/s43207-023-00296-3

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Tecnológico Nacional de México (grants 14228.22-P and 17564). D. E. Puente-Martínez and K. A. Gonzalez-García thank Mexican CONACYT for the scholarship (557621 and 860984 respectively) granted for their Ph. D. studies. K. P. Padmasree thanks CONACYT Mexico for the grant A1-S-29845.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Díaz-Guillén.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

This paper meets the ethical standards of this journal.

Consent to participate

All authors agree with the review of this paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puente-Martínez, D.E., Díaz-Guillén, J.A., González-García, K.A. et al. Improving the electrical properties of Er-doped CeO2: effect of sintering aids CaO, MgO, and TiO2 on conductivity. J. Korean Ceram. Soc. 60, 817–829 (2023). https://doi.org/10.1007/s43207-023-00306-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00306-4

Keywords

Navigation