Skip to main content
Log in

Review of the thermally stimulated depolarization current (TSDC) technique for characterizing dielectric materials

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Atomic defects, particularly oxygen vacancies, affect the charge transport mechanisms and DC resistance changes in dielectric materials; therefore, their concentrations and distributions are crucial for understanding the electrical property deterioration of materials. The thermally stimulated depolarization current (TSDC) technique has been introduced to investigate the behavior and characteristics of atomic defects in dielectric materials, which is one of the best and most widely used methods among various techniques. The relaxation type including dipoles, trap charges, and mobile ions, and the concentration of defects in dielectrics can be determined through information such as maximum temperature (Tm), and maximum current density (Jm) from each peak in the TSDC results and activation energy (Ea) calculated from the slope. In this review, an overview of the TSDC technique, including fundamental theory, characterizing procedures such as poling processes and current measurement during depolarization, an analytical method according to the variables, and applications to various dielectric systems, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data is available when it is rquired to the authors by contact through mail.

References

  1. Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass-ceramics. J. Am. Ceram. Soc. 94, 1805–1810 (2011). https://doi.org/10.1111/j.1551-2916.2010.04301.x

    Article  CAS  Google Scholar 

  2. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015). https://doi.org/10.1179/1743280415Y.0000000007

    Article  CAS  Google Scholar 

  3. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03, 1330001 (2013). https://doi.org/10.1142/s2010135x13300016

    Article  Google Scholar 

  4. M.T. Jilani, M. Zaka, A.M. Khan, M.T. Khan, S.M. Ali, A brief review of measuring techniques for characterization of dielectric materials. Int. J. Informat.Technol. Elect. Eng. (ITEE). 1, 1–5 (2012)

    Google Scholar 

  5. X. Zhang, Y. Zhang, J. Zhang, B. Peng, Z. Xie, L. Yuan, Z. Yue, L. Li, Microwave dielectric properties and thermally stimulated depolarization currents study of (1–x )Ba 0.6 Sr 0.4 La 4 Ti 4 O 15–x TiO 2 ceramics. J. Am. Ceramic Soc. 97, 3170–3176 (2014). https://doi.org/10.1111/jace.13123

    Article  CAS  Google Scholar 

  6. Y. Gao, J. Jiang, J. Wang, L. Gan, T. Zhang, Novel high-Q × f (1–x)CeO2–xCaF2 (0.2 ≤ x ≤ 0.6) microwave dielectric ceramics sintered at medium temperatures. J. Korean Ceramic Soc. 59, 929–935 (2022). https://doi.org/10.1007/s43207-022-00223-y

    Article  CAS  Google Scholar 

  7. Z. Zhao, Y. Zhang, Q. Zhang, X. Song, J. Zhu, X. Wang, Z. Zheng, Dielectric relaxation investigations in barium strontium titanate glass-ceramics: thermally stimulated depolarization current technique. Physica Status Solidi (A) Appl. Mater. Sci. 211, 2150–2156 (2014). https://doi.org/10.1002/pssa.201431119

    Article  CAS  Google Scholar 

  8. S. Priyadarshinee, J. Pati, R. Mahapatra, P. Mohanty, D.K. Mishra, J. Mohapatra, Studies of structural, microstructural, optical and dielectric properties of GdMnO3. J. Korean Ceram. Soc. 60, 203–214 (2023). https://doi.org/10.1007/s43207-022-00256-3

    Article  CAS  Google Scholar 

  9. D.K. Pati, P.R. Das, B.N. Parida, B. Behera, R. Padhee, Structural, electrical, magnetic and narrow band gap-correlated optical characteristics of multiferroic [Pb(Fe0.5Nb0.5)O3]0.5−[(Ba0.8Sr0.2)TiO3]0.5. J Korean Ceramic Soc. 59, 811–834 (2022). https://doi.org/10.1007/s43207-022-00220-1

    Article  CAS  Google Scholar 

  10. X. Zang, H. Li, Y. Lu, H. Tan, H. Ji, M. Yan, Z. Liu, Dielectric properties and thermal conductivity of Si3N4–SiC composite ceramics. J. Korean Ceram. Soc. 59, 903–908 (2022). https://doi.org/10.1007/s43207-022-00232-x

    Article  CAS  Google Scholar 

  11. K.P. McKenna, A.L. Shluger, Electronic properties of defects in polycrystalline dielectric materials. Microelectron Eng. 86, 1751–1755 (2009). https://doi.org/10.1016/j.mee.2009.03.125

    Article  CAS  Google Scholar 

  12. X. Zhang, Z. Yue, B. Peng, Z. Xie, L. Yuan, J. Zhang, L. Li, Polarization response and thermally stimulated depolarization current of BaTiO 3-based Y5V ceramic multilayer capacitors. J. Am. Ceram. Soc. 97, 2921–2927 (2014). https://doi.org/10.1111/jace.13078

    Article  CAS  Google Scholar 

  13. H. Bae, Y. Shin, L. Mathur, D. Lee, S.J. Song, Defect chemistry of p-type perovskite oxide La0.2Sr0.8FeO3-δ: a combined experimental and computational study. J. Korean Ceramic Soc. 59, 876–888 (2022). https://doi.org/10.1007/s43207-022-00237-6

    Article  CAS  Google Scholar 

  14. S. Lenka, T. Badapanda, P. Nayak, S. Sarangi, S. Anwar, Compositional induced dielectric relaxation and electrical conduction behavior of samarium modified bismuth sodium titanate ceramic. Ceram Int. 47, 5477–5486 (2021). https://doi.org/10.1016/j.ceramint.2020.10.130

    Article  CAS  Google Scholar 

  15. Z. Gargar, A. Zegzouti, M. Elaatmani, A. Tachafine, D. Fasquelle, A. Outzourhit, M. Daoud, M. Afqir, Structure, electrical, and dielectric properties of Ba1−xYxTi(1–x/4)O3 ceramics sintering at low temperature. J. Korean Ceram. Soc. 60, 52–61 (2023). https://doi.org/10.1007/s43207-022-00234-9

    Article  CAS  Google Scholar 

  16. A.K. Mahapatra, T. Badapanda, S. Sahoo, S. Sarangi, Investigation of structure–property correlation on the dielectric and optical properties of lanthanum modified barium titanate ceramic. J. Korean Ceram. Soc. 59, 944–955 (2022). https://doi.org/10.1007/s43207-022-00245-6

    Article  CAS  Google Scholar 

  17. W. Liu, C.A. Randall, Thermally stimulated relaxation in Fe-doped SrTiO3 systems: II degradation of SrTiO3 dielectrics. J. Am. Ceramic Soc. 91, 3251–3257 (2008). https://doi.org/10.1111/j.1551-2916.2008.02613.x

    Article  CAS  Google Scholar 

  18. M. Nassar, A. Elshahhat, statistical analysis of inverse Weibull constant-stress partially accelerated life tests with adaptive progressively type I censored data. Mathematics. 11, 370 (2023). https://doi.org/10.3390/math11020370

    Article  Google Scholar 

  19. S. Rahman, M. Azharuddin, J. Bansal, M. Bilal, R. Tabassum, A.K. Hafiz, Role of temperature on CdS and MoS2 doped SnO2 nanostructures: Potential applications in photodetection and temperature dependent current-voltage characteristics. J Alloys Compd. 941, 168901 (2023). https://doi.org/10.1016/j.jallcom.2023.168901

    Article  CAS  Google Scholar 

  20. M.U. Rehman, A. Manan, A. Ullah, Y. Iqbal, M.A. Khan, R. Muhammad, Structural, dielectric and complex impedance analysis of Pb-free BaTiO3-Bi(Mg0.5Ce0.5)O3 ceramics. J Alloys Compd. 947, 169575 (2023). https://doi.org/10.1016/j.jallcom.2023.169575

    Article  CAS  Google Scholar 

  21. B. Plotkin-Swing, G.J. Corbin, S. De Carlo, N. Dellby, C. Hoermann, M.V. Hoffman, T.C. Lovejoy, C.E. Meyer, A. Mittelberger, R. Pantelic, L. Piazza, O.L. Krivanek, Hybrid pixel direct detector for electron energy loss spectroscopy. Ultramicroscopy 217, 113067 (2020). https://doi.org/10.1016/j.ultramic.2020.113067

    Article  CAS  Google Scholar 

  22. V.D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), in Characterization of Nanoparticles. (Elsevier, 2019)

    Google Scholar 

  23. W. Wu, Z. Liu, Y. Gu, Z. Yue, Y. Li, Thermally stimulated depolarization current study on barium titanate single crystals. AIP Adv. 8, 045005 (2018). https://doi.org/10.1063/1.5025501

    Article  CAS  Google Scholar 

  24. S.H. Yoon, J.S. Park, S.H. Kim, D.Y. Kim, Thermally stimulated depolarization current analysis for the dielectric aging of Mn and V-codoped BaTiO3 multi-layer ceramic capacitor. Appl Phys Lett. 103, 042901 (2013). https://doi.org/10.1063/1.4816380

    Article  CAS  Google Scholar 

  25. J.J. Carter, T.J.M. Bayer, C.A. Randall, Degradation and recovery of iron doped barium titanate single crystals via modulus spectroscopy and thermally stimulated depolarization current. J. Appl. Phys. (2017). https://doi.org/10.1063/14980094

    Article  Google Scholar 

  26. C.A. Randall, R. Maier, W. Qu, K. Kobayashi, K. Morita, Y. Mizuno, N. Inoue, T. Oguni, Improved reliability predictions in high permittivity dielectric oxide capacitors under high dc electric fields with oxygen vacancy induced electromigration. J Appl Phys. (2013). https://doi.org/10.1063/14772599

    Article  Google Scholar 

  27. S.H. Yoon, C.A. Randall, K.H. Hur, Correlation between resistance degradation and thermally stimulated depolarization current in acceptor (Mg)-doped BaTiO3 submicrometer fine-grain ceramics. J. Am. Ceram. Soc. 93, 1950–1956 (2010). https://doi.org/10.1111/j.1551-2916.2010.03647.x

    Article  CAS  Google Scholar 

  28. S.H. Yoon, C.A. Randall, K.H. Hur, Effect of Acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: II. Thermally stimulated depolarization current analysis. J. Am. Ceram. Soc. 92, 1766–1772 (2009). https://doi.org/10.1111/j.1551-2916.2009.03122.x

    Article  CAS  Google Scholar 

  29. H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-Mckinstry, C.A. Randall, High-energy density dielectrics and capacitors for elevated temperatures: Ca (Zr, Ti) O3. J. Am. Ceram. Soc. 96, 1209–1213 (2013). https://doi.org/10.1111/jace.12184

    Article  CAS  Google Scholar 

  30. J.C.C.A. Diaz, J.C. M’Peko, M. Venet, P.S. da Silva, Unveiling the high-temperature dielectric response of Bi 0.5Na 0.5TiO3. Sci Rep (2020). https://doi.org/10.1038/s41598-020-75859-z

    Article  Google Scholar 

  31. J. Singh, A.T. Kalghatgi, J. Parui, S.B. Krupanidhi, High-temperature dielectric response in pulsed laser deposited Bi 1.5 Zn1.0 Nb1.5 O7 thin films. J Appl Phys. Doi 10(1063/1), 3457335 (2010)

    Google Scholar 

  32. J. Zhang, Z. Yue, Y. Luo, X. Zhang, L. Li, Understanding the thermally stimulated relaxation and defect behavior of Ti-containing microwave dielectrics: A case study of BaTi4O9. Mater. Des. 130, 479–487 (2017). https://doi.org/10.1016/j.matdes.2017.05.086

    Article  CAS  Google Scholar 

  33. W. Liu, C.A. Randall, Thermally stimulated relaxation in Fe-doped SrTiO3 systems: I. Single crystals. J. Am. Ceram. Soc. 91, 3245–3250 (2008). https://doi.org/10.1111/j.1551-2916.2008.02595.x

    Article  CAS  Google Scholar 

  34. J.-S.P.Y.-T.K. and K.-H.H. Ji-Young Park, Thermally stimulated depolarization current test for reliability of X5R MLCC. J. Korean Ceramic Soc. 46, 155–160 (2009). https://doi.org/10.4191/kcers.2009.46.2.155

    Article  Google Scholar 

  35. W. Guo, J. Zhang, Y. Luo, Z. Yue, L. Li, Microwave dielectric properties and thermally stimulated depolarization of Al-doped Ba4(Sm, Nd)933Ti18O54 ceramics. J. Am. Ceramic Soc. 102, 5494–5502 (2019). https://doi.org/10.1111/jace.16448

    Article  CAS  Google Scholar 

  36. Y. Luo, J. Zhang, Z. Yue, L. Li, Improvement in microwave dielectric properties of Sr2TiO4 ceramics through post-annealing treatment. J Electroceram. 41, 67–72 (2018). https://doi.org/10.1007/s10832-018-0160-z

    Article  CAS  Google Scholar 

  37. X. Zhang, L. Zhang, J. Zhang, Z. Xie, L. Yuan, Z. Yue, L. Li, Dielectric response and thermally stimulated depolarization current analysis of BaNd1.76Bi0.24Ti5O14 high-temperature microwave capacitors. J. Mater. Sci. 50, 1141–1149 (2015). https://doi.org/10.1007/s10853-014-8670-9

    Article  CAS  Google Scholar 

  38. T.N.M. Ngo, U. Adem, T.T.M. Palstra, The origin of thermally stimulated depolarization currents in multiferroic CuCrO2. Appl. Phys. Lett. 106, 152904 (2015). https://doi.org/10.1063/1.4918747

    Article  CAS  Google Scholar 

  39. H. Smaoui, M. Arous, H. Guermazi, S. Agnel, A. Toureille, Study of relaxations in epoxy polymer by thermally stimulated depolarization current (TSDC) and dielectric relaxation spectroscopy (DRS). J. Alloys Compd. 489, 429–436 (2010). https://doi.org/10.1016/j.jallcom.2009.09.116

    Article  CAS  Google Scholar 

  40. R.M. Neagu, E.R. Neagu, I.M. Kalogeras, A. Vassilikou-Dova, Evaluation of the dielectric parameters from TSDC spectra: application to polymeric systems. Mater. Res. Innovations 4, 115–125 (2001). https://doi.org/10.1007/PL00010780

    Article  CAS  Google Scholar 

  41. Y. Zhu, S. Li, T. Li, D. Min, B. Ma, 2015 Trap parameters analysis of oil-paper insulation by thermally stimulated depolarization current, In: Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, Institute of Electrical and Electronics Engineers Inc. Doi: https://doi.org/10.1109/ICPADM.2015.7295220.

  42. B. Akkopru-Akgun, D.M. Marincel, K. Tsuji, T.J.M. Bayer, C.A. Randall, M.T. Lanagan, S. Trolier-McKinstry, Thermally stimulated depolarization current measurements on degraded lead zirconate titanate films. J. Am. Ceram. Soc. 104, 5270–5280 (2021). https://doi.org/10.1111/jace.17891

    Article  CAS  Google Scholar 

  43. M. Madani, N.A. Maziad, R.M. Khafagy, Thermally stimulated depolarization current and thermal analysis studies of gamma irradiated lithium-salt/polymer electrolyte blends. J. Macromol. Sci. Part B Phys. 46, 1191–1203 (2007). https://doi.org/10.1080/00222340701629224

    Article  CAS  Google Scholar 

  44. P. Photopoulos, C. Tsonos, I. Stavrakas, D. Triantis, A method for the calculation the activation energies of thermally stimulated depolarization current peaks: application in polyvinylidene fluoride/graphene nanocomposites. Physica B Condens Matter. 622, 413338 (2021). https://doi.org/10.1016/j.physb.2021.413338

    Article  CAS  Google Scholar 

  45. G. Bon Mardion, B.B. Goodman, A. Lacaze, C. Bucci, R. Fieschi, Ionic thermoconductivity method for the investigation of polarization in insulators. J. Phys. Chem. Solids. 12, 1943 (1957). https://doi.org/10.1103/PhysRevLett.12.16

    Article  Google Scholar 

  46. K.C. Shaing, K. Ida, S.A. Sabbagh, The electron trap mechanism of luminescence insulphide and silicate phosphors. Proc. Phys. Soc. 60, 574 (1948). https://doi.org/10.1088/0959-5309/60/6/308

    Article  Google Scholar 

  47. S.H. Yoon, J.B. Lim, S.H. Kim, D.Y. Kim, Influence of Dy on the dielectric aging and thermally stimulated depolarization current in Dy and Mn-codoped BaTiO3 multilayer ceramic capacitor. J. Mater. Res. 28, 3252–3256 (2013). https://doi.org/10.1557/jmr.2013.347

    Article  CAS  Google Scholar 

  48. S.H. Yoon, S.H. Kim, D.Y. Kim, Correlation between i (current)-V (voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor. J. Appl. Phys. 114, 074102 (2013). https://doi.org/10.1063/1.4818947

    Article  CAS  Google Scholar 

  49. G.M. Nasr, A.A. El-Sherif, M.M. Omar, E. Mousa, TSDC studies of LASER irradiated and unirradiated PVDF composites doped with Pd(II) benzimidazole complex. J. Multidisciplinary Eng. Sci. Technol. (JMEST). 9, 2458–9403 (2022)

    Google Scholar 

  50. J.J. Moura Ramos, N.T. Correia, The determination of the activation energy of a relaxational process from thermally stimulated depolarisation currents (TSDC) data: An illustration with the β-relaxation of maltitol. Thermochim. Acta. 426, 185–190 (2005). https://doi.org/10.1016/j.tca.2004.07.020

    Article  CAS  Google Scholar 

  51. F. Namouchi, W. Jilani, H. Guermazi, Thermally stimulated depolarization current and dielectric spectroscopy used to study dipolar relaxations and trap level distribution in PMMA polymer. J. Non. Cryst. Solids. 427, 76–82 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.07.004

    Article  CAS  Google Scholar 

  52. Y. Tanaka, T. Iwasaki, M. Nakamura, A. Nagai, K. Katayama, K. Yamashita, Polarization and microstructural effects of ceramic hydroxyapatite electrets. J. Appl. Phys. 107, 014107 (2010). https://doi.org/10.1063/1.3265429

    Article  CAS  Google Scholar 

  53. C.A. Nieves, A.L. Ogrinc, S.H. Kim, E. Furman, M.T. Lanagan, Ion migration study in acid-leached soda–lime–silica glass by thermally stimulated depolarization current analysis. J. Am. Ceram. Soc. (2023). https://doi.org/10.1111/jace.19064

    Article  Google Scholar 

  54. Y. Shi, L. Zhang, J. Zhang, Z. Yue, Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites. AIP Adv. 7, 125315 (2017). https://doi.org/10.1063/1.5012094

    Article  CAS  Google Scholar 

  55. F. El Kamel, P. Gonon, F. Jomni, B. Yangui, Thermally stimulated currents in amorphous barium titanate thin films deposited by rf magnetron sputtering. J Appl Phys. 100, 054107 (2006). https://doi.org/10.1063/1.2337390

    Article  CAS  Google Scholar 

  56. S. Qiang, Z. Zhu, Z. Yao, H. Hao, M. Cao, H. Liu, Polarization response and thermally stimulated depolarization currents of the modified (Ba, Ca) (Zr, Ti)O3 piezoelectric ceramics. Ceram Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.027

    Article  Google Scholar 

  57. D.S.B. Heidary, C.A. Randall, Li2CO3-coated Ni particles for the inner electrodes of multilayer ceramic capacitors: Evaluation of lifetime. ACS Appl. Mater. Interfaces. 9, 585–591 (2017). https://doi.org/10.1021/acsami.6b13526

    Article  CAS  Google Scholar 

  58. J. Zhang, Z. Yue, Y. Zhou, B. Peng, X. Zhang, L. Li, Temperature-dependent dielectric properties, thermally-stimulated relaxations and defect-property correlations of TiO2 ceramics for wireless passive temperature sensing. J. Eur. Ceram. Soc. 36, 1923–1930 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.015

    Article  CAS  Google Scholar 

  59. A. Sharma, S. Yarramaneni, J.K. Quamara, Evaluation of dielectric relaxation parameters from TSDC analysis of pristine and ion irradiated kapton-H polyimide. Nucl. Instrum. Methods Phys. Res. B. 269, 759–763 (2011). https://doi.org/10.1016/j.nimb.2011.02.008

    Article  CAS  Google Scholar 

  60. H. Qu, B. Luo, S. Bian, Z. Yue, Thermally stimulated relaxation and behaviors of oxygen vacancies in SrTiO3 single crystals with (100), (110) and (111) orientations. Mater. Res. Exp. (2020). https://doi.org/10.1088/2053-1591/ab8656

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF– 2023R1A2C2005864) and Samsung Electro-Mechanics Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Goud, J.P., Ye, J. et al. Review of the thermally stimulated depolarization current (TSDC) technique for characterizing dielectric materials. J. Korean Ceram. Soc. 60, 747–759 (2023). https://doi.org/10.1007/s43207-023-00305-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00305-5

Keywords

Navigation