Skip to main content
Log in

Fabrication of hollow titania fibers by electro-spinning for photocatalytic degradation of organic dyes

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Nanostructured titania (TiO2) fibers such as nonporous, macroporous, hollow, and hollow macroporous fibers were successfully prepared by electrospinning using titanium diisopropoxide bis (acetylacetonate) (TDIP) as starting material. Hollow TiO2 fibers were fabricated using two syringe pumps and dual concentric nozzle to prepare hollow microstructure inside the fibrous materials. Oil was supplied to core of nozzle and polymeric mixture containing the titania precursor was injected into outer layer of nozzle. Then, oil from electro-spun fibers was removed by washing with organic solvent to obtain hollow microstructure. Macroporous hollow titania fibers could be also fabricated from spinning solution composed of the titania precursor and PS nanospheres as sacrificial templates. Thickness of fiber walls of macroporous hollow titania fibers became thinner from 425.5 to 353.5 nm, when flow rate of titania precursor solution was adjusted from 15 to 10 μL/min. SEM, XRD, and FT-IR analysis were employed to characterize morphologies, crystallinity, and compositions of the fibers, respectively. Photocatalytic removal of methylene blue under UV light illumination was performed using four different kinds of the titania fibers to compare their photocatalytic activity. Rate constant of the degradation reaction could be estimated from experimental data during photocatalytic degradation, assuming first-order kinetics. The rate constant of hollow titania fiber (0.0772 min−1) was estimated as the highest value among various kinds of the nanostructured fibers, showing the best photocatalytic ability for decomposition of organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K.-K. Kefeni, B.-B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review. Sustain. Mater. Technol. 23, e00140 (2020)

    CAS  Google Scholar 

  2. J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 42(1), 56–68 (2021)

    Article  Google Scholar 

  3. P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, MXene-based photocatalysts. J. Mater. Sci. Technol. 56(1), 18–44 (2020)

    Article  CAS  Google Scholar 

  4. Z. Wang, J. Fan, B. Cheng, J. Yu, J. Xu, Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 5, 100279 (2020)

    Article  Google Scholar 

  5. F. Xu, H. Tan, J. Fan, B. Cheng, J. Yu, J. Xu (2021) Electrospun TiO2-based photocatalysts. Sol.RRL. 5:2000571

  6. T.-H. Yun, C. Yim, Uniform fabrication of hollow titania using anionic modified acrylated polymer template for phase composition effect as photocatalyst and infrared reflective coating. Nanomaterials 11, 2845 (2021)

    Article  CAS  Google Scholar 

  7. M.-R. Hoffmann, S.-T. Martin, W. Choi, D.-W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  8. A. Fujishima, X. Zhang, T.-A. Donald, Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy. 32, 2664–2672 (2007)

    Article  CAS  Google Scholar 

  9. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  10. K. Maeda, Photocatalytic water splitting using semiconductorparticles: History and recent developments. J. Photochem. Photobiol. C Photochem. Rev. 12, 237–268 (2011)

    Article  CAS  Google Scholar 

  11. R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C Photochem. Rev. 11, 179–209 (2010)

    Article  Google Scholar 

  12. W. Choi, A. Termin, M.-R. Hoffmann, The role of metal ion dopants in quantum sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)

    Article  Google Scholar 

  13. M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Recent progress on titanium dioxide nanomaterials for photocatalytic applications. Chemsuschem 11(18), 3023–3047 (2018)

    Article  CAS  Google Scholar 

  14. S.-M. Pasini, A. Valério, G. Yin, J. Wang, S.-M.-A.-G.-U. Souza, D. Hotza, A.-A.-U. Souza, An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment. J. Water Process. Eng. 40, 101827 (2021)

    Article  Google Scholar 

  15. F.-D. Utami, D.-Y. Rahman, K. Sutisna, D.-O. Margareta, M. Abdullah, Photocatalyst based on TiO2 and its application in organic wastewater treatment using simple spray method. J. Phys. Conf. Ser. 1204, 012086 (2019)

    Article  CAS  Google Scholar 

  16. H.L. An, L. Kang, H.-J. Ahn, Y.-H. Choa, Ch.G. Lee, Synthesis and characterization of TiO2/CuS nanocomposite fibers as a visible light-driven photocatalyst. J. Korean Ceram. Soc. 55(3), 267–274 (2018)

    Article  CAS  Google Scholar 

  17. K. Sharma, V. Sharma, S.-S. Sharma, Dye-sensitized solar cells: Fundamentals and status. Nanoscale Res. Lett. 13, 381 (2018)

    Article  Google Scholar 

  18. T. Ochiai, A. Fujishima, Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C: Photochem. Rev. 13, 247–262 (2012)

    Article  CAS  Google Scholar 

  19. S.-E. Sherbiny, F. Morsy, M. Samir, O.-A. Fouad, Synthesis, characterization, and application of TiO2 nanopowders as special paper coating pigment. Appl. Nanosci. 4, 305–313 (2014)

    Article  Google Scholar 

  20. K. Kamiya, K. Tanimoto, T. Yoko, Preparation of TiO2 fibres by hydrolysis and polycondensation of Ti(O—i-C3H7)4. J. Mater. Sci. Lett. 5, 402–404 (1986)

    Article  CAS  Google Scholar 

  21. Y.-F. Chen, C.-Y. Lee, M.-Y. Yeng, H.-T. Chiu, Preparing titanium oxide with various morphologies. Mater. Chem. Phys. 81, 39–44 (2003)

    Article  CAS  Google Scholar 

  22. W. Huang, A. Duan, Z. Zhao, G. Wan, G. Jiang, T. Dou, K.-H. Chung, J. Liu, Ti-modified alumina supports prepared by sol–gel method used for deep HDS catalysts. Catal. Today 131, 314–321 (2008)

    Article  CAS  Google Scholar 

  23. K.C. Hui, H. Suhaimi, N.-S. Sambudi, Electrospun-based TiO2 nanofibers for organic pollutant photodegradation: a comprehensive review. J. Rev. Chem. Eng. 38, 641–668 (2021)

    Article  Google Scholar 

  24. S. Park, D.-Y. Lee, M.-H. Lee, S.-J. Lee, B.-Y. Kim, Fabrication of electrospun titania nanofiber. J. Korean Ceram. Soc. 42(8), 548–553 (2005)

    Article  CAS  Google Scholar 

  25. J. Xie, Y. Xia, Electrospinning: an enabling technique for nanostructured materials. Material Matters 3(1), 19 (2008)

    CAS  Google Scholar 

  26. J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 119(8), 5298–5415 (2019)

    Article  CAS  Google Scholar 

  27. H.-H. Nguyen, T.-T.-H. Nguyen, Y.-S. Cho, Fabrication and surface modification of macroporous silica fibers by electrospinning for super adsorbent of oil. Korean J. Met. Mater. 60(10), 732–743 (2022)

    Article  CAS  Google Scholar 

  28. S. Agarw, J.-H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)

    Article  Google Scholar 

  29. M. Baca, K. Wenelska, E. Mijowska, R.-J. Kaleńczuk, B. Zielińska, Physicochemical and photocatalytic characterization of mesoporous carbon/ titanium dioxide spheres. Diam. Relat. Mater. 101, 107551 (2020)

    Article  CAS  Google Scholar 

  30. E. Ersöz, O.-A. Yildirim, Green synthesis and characterization of Ag-doped ZnO nanofibers for photodegradation of MB, RhB and MO dye molecules. J. Korean Ceram. Soc. 59(5), 655–670 (2022)

    Article  Google Scholar 

  31. M.-C. Chang, Nitrogen doping in polycrystalline anatase TiO2 ceramics by atmosphere controlled firing. J. Korean Ceram. Soc. 56(4), 374–386 (2019)

    Article  CAS  Google Scholar 

  32. X. Li, Z. Zhang, F.-J. Zhang, J. Liu, J. Ye, W.-C. Oh, Synthesis and photocatalytic activity of TiO2/BiVO4 layered films under visible light irradiation. J. Korean Ceram. Soc. 53(6), 665–669 (2016)

    Article  CAS  Google Scholar 

  33. M. Rashidzadeh, Synthesis of high-thermal stable titanium dioxide nanoparticles. Int. J. Photoenergy. 245981, 1–4 (2008)

    Article  Google Scholar 

  34. B. Vafakish, M. Barari, E. Jafari, Biodiesel production by transesterification of tallow fat using heterogeneous catalysis. Bulg. Chem. Commun. 47(2), 558–564 (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A03015562) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1047451).

Funding

Priority Research Centers Program through the National Research Foundation of Korea (NRF), NRF-2017R1A6A1A03015562, Young-Sang Cho, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), No. 2021R1F1A1047451, Young-Sang Cho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sang Cho.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This paper meets the ethical standards of this journal.

Consent to participate

All authors agree with the review of this paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.H., Nguyen, H.H. & Cho, YS. Fabrication of hollow titania fibers by electro-spinning for photocatalytic degradation of organic dyes. J. Korean Ceram. Soc. 60, 702–711 (2023). https://doi.org/10.1007/s43207-023-00302-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00302-8

Keywords

Navigation