Skip to main content
Log in

Preparation of multiferroic lead iron niobate thin film with low crystallization temperature via sol–gel method using monoethanolamine

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study reports the synthesis of a multiferroic lead iron niobate (PbFe1/2Nb1/2O3, PFN) thin film with a low crystallization temperature using monoethanolamine (MEA) as a chelating agent via a sol–gel method. The results revealed that the presence of MEA led the Nb precursor to react at ~ 150 °C instead of 325–350 °C, thus indicating that the Nb precursor reacted first with the Fe precursor rather than the Pb precursor. Furthermore, X-ray diffraction patterns revealed that the addition of MEA allowed the PFN thin films to be sintered as a single phase at low temperatures (~500 °C), while this can be only achieved at temperatures above 800 °C in the absence of MEA. The scanning electron microscope images revealed that the obtained PFN thin film was uniformly coated on the SiO2/Si substrate both in the absence and presence of MEA. Consequently, the presence of MEA can broaden the application scope of PFN thin films in photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data in this article are available from the corresponding author on request.

References

  1. S. Chu, A. Majumdar, Nature 488, 294 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  2. Best Research-Cell Efficiency Chart, (Publishing NREL, 2022). https://www.nrel.gov/pv/cell-efficiency.html. Accessed 01 Nov 2022

  3. W. Shockley, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  4. M.B. Johnston, L.M. Herz, Acc. Chem. Res. 49, 146 (2016). https://doi.org/10.1021/acs.accounts.5b00411

    Article  CAS  Google Scholar 

  5. J.S. Manser, P.V. Kamat, Nat. Photonics 8, 737 (2014). https://doi.org/10.1038/nphoton.2014.171

    Article  CAS  Google Scholar 

  6. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015). https://doi.org/10.1126/science.aaa9272

    Article  CAS  Google Scholar 

  7. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014). https://doi.org/10.1038/nmat4014

    Article  CAS  Google Scholar 

  8. I.Y. Choi, C.U. Kim, W. Park, H. Lee, M.H. Song, K.K. Hong, S.I. Seok, K.J. Choi, Nano Energy 65, 104044 (2019). https://doi.org/10.1016/j.nanoen.2019.104044

    Article  CAS  Google Scholar 

  9. J. Werner, B. Niesen, C. Ballif, Adv. Mater. Interfaces 5, 1700731 (2018). https://doi.org/10.1002/admi.201700731

    Article  Google Scholar 

  10. H. Huang, Nat. Photonics 4, 134 (2010). https://doi.org/10.1038/nphoton.2010.15

    Article  CAS  Google Scholar 

  11. P. Lopez-Varo, L. Bertoluzzi, J. Bisquert, M. Alexe, M. Coll, J. Huang, J.A. Jimenez-Tejada, T. Kirchartz, R. Nechache, F. Rosei, Phys. Rep. 653, 1 (2016). https://doi.org/10.1016/j.physrep.2016.07.006

    Article  CAS  Google Scholar 

  12. S. Yang, J. Seidel, S. Byrnes, P. Shafer, C.-H. Yang, M. Rossell, P. Yu, Y.-H. Chu, J. Scott, J. Ager, Nat. Nanotechnol. 5, 143 (2010). https://doi.org/10.1038/nnano.2009.451

    Article  CAS  Google Scholar 

  13. T. Choi, S. Lee, Y. Choi, V. Kiryukhin, S.-W. Cheong, Science 324, 63 (2009). https://doi.org/10.1126/science.1168636

    Article  CAS  Google Scholar 

  14. J.H. Cho, W. Jo, Ceramist 24, 228 (2021). https://doi.org/10.31613/ceramist.2021.24.3.03

    Article  Google Scholar 

  15. J.H. Cho, Y.J. Kim, S.H. Kim, Y.J. Lee, J.Y. Choi, G.T. Hwang, J.H. Ryu, S.K. Kwak, W. Jo, J. Am. Ceram. Soc. 105, 2655 (2021). https://doi.org/10.1111/jace.18248

    Article  CAS  Google Scholar 

  16. J.H. Cho, S. Cho, J.H. Lee, H. Palneedi, J.H. Lee, H.P. Kim, N.J. Lee, S. Tigunta, S. Pojprapai, S.H. Kim, J.H. Ryu, Y.S. Oh, S.B. Hong, W. Jo, J. Am. Ceram. Soc. 104, 6384 (2021). https://doi.org/10.1111/jace.18012

    Article  CAS  Google Scholar 

  17. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 9, 61 (2015). https://doi.org/10.1038/nphoton.2014.255

    Article  CAS  Google Scholar 

  18. J.H. Cho, W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng. 34, 149 (2021). https://doi.org/10.4313/JKEM.2021.34.3.149

    Article  Google Scholar 

  19. J.H. Cho, J.H. Lee, H.S. Jang, N.J. Lee, W.S. Kang, G.T. Hwang, S.H. Kim, M.G. Kim, W. Jo, J. Appl. Phys. 130, 094101 (2021). https://doi.org/10.1063/5.0058823

    Article  CAS  Google Scholar 

  20. J.-H. Park, J.-H. Lee, J.-H. Cho, J.M. Jang, W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng. 35, 297 (2022). https://doi.org/10.4313/JKEM.2022.35.3.13

    Article  Google Scholar 

  21. Influence of synthesis route on the properties of lead iron niobate, (Publishing IEEE, 2019) https://www.springer.com/journal/43207/submission-guidelines. Accessed 01 November 2022

  22. M. Grätzel, J. Sol-Gel Sci. Technol. 22, 7 (2001). https://doi.org/10.1023/A:1011273700573

    Article  Google Scholar 

  23. Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, Y. Song, Ceram. Int. 39, 8729 (2013). https://doi.org/10.1016/j.ceramint.2013.04.058

    Article  CAS  Google Scholar 

  24. R. Reisfeld, Opt. Mater. 16, 1 (2001). https://doi.org/10.1016/S0925-3467(00)00052-5

    Article  CAS  Google Scholar 

  25. H. Quek, M. Yan, Ferroelectrics 74, 95 (1987). https://doi.org/10.1080/00150198708014499

    Article  CAS  Google Scholar 

  26. S. Majumder, S. Bhattacharyya, R. Katiyar, A. Manivannan, P. Dutta, M. Seehra, J. Appl. Phys. 99, 024108 (2006). https://doi.org/10.1063/1.2158131

    Article  CAS  Google Scholar 

  27. S.H. Yoon, D. Liu, D. Shen, M. Park, D.-J. Kim, J. Mater. Sci. 43, 6177 (2008). https://doi.org/10.1007/s10853-008-2929-y

    Article  CAS  Google Scholar 

  28. Y. Liu, T. Moser, C. Andres, L. Gorjan, A. Remhof, F. Clemens, T. Graule, A.N. Tiwari, Y.E. Romanyuk, J. Mater. Chem. A 7, 3083 (2019). https://doi.org/10.1039/C8TA09891C

    Article  CAS  Google Scholar 

  29. Q. Liu, G. Yi, D. Barber, Mater. Lett. 38, 239 (1999). https://doi.org/10.1016/S0167-577X(98)00165-7

    Article  CAS  Google Scholar 

  30. T.G. Cardenas, G.V. Delgado, J.E. Acuña, C.A. Lima, J. Chil. Chem. Soc. 50, 455 (2005). https://doi.org/10.4067/S0717-97072005000200003

    Article  Google Scholar 

  31. S.G. De Ávila, M.A. Logli, J.R. Matos, Int. J. Greenh. Gas Control. 42, 666 (2015). https://doi.org/10.1016/j.ijggc.2015.10.001

    Article  CAS  Google Scholar 

  32. F.J. Martinez-Casado, M. Ramos-Riesco, J.A. Rodríguez-Cheda, F. Cucinotta, E. Matesanz, I. Miletto, E. Gianotti, L. Marchese, Z. Matej, Inorg. Chem. 55, 8576 (2016). https://doi.org/10.1021/acs.inorgchem.6b01116

    Article  CAS  Google Scholar 

  33. P. Melnikov, V. Nascimento, I. Arkhangelsky, L. Zanoni-Consolo, L. De Oliveira, J. Therm. Anal. Calorim. 115, 145 (2014). https://doi.org/10.1007/s10973-013-3339-1

    Article  CAS  Google Scholar 

  34. X. Wu, L. Wang, W. Ren, X. Yan, P. Shi, X. Chen, X. Yao, Ferroelectrics 367, 61 (2008). https://doi.org/10.1080/00150190802365947

    Article  CAS  Google Scholar 

  35. Y.-C. Liou, Y.-C. Huang, C.-T. Wu, Mater. Res. Soc. Symp. Proc. (2004). https://doi.org/10.1557/PROC-848-FF9.2

    Article  Google Scholar 

  36. J.-K. Yang, W.S. Kim, H.-H. Park, Thin Solid Films 377, 739 (2000). https://doi.org/10.1016/S0040-6090(00)01325-0

    Article  Google Scholar 

  37. E. Tkalcec, M. Sauer, R. Nonninger, H. Schmidt, J. Mater. Sci. 36, 5253 (2001). https://doi.org/10.1023/A:1012462332440

    Article  CAS  Google Scholar 

  38. S. Zhang, Z. Xianting, W. Yongsheng, C. Kui, W. Wenjian, Surf. Coat. Technol. 200, 6350 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.033

    Article  CAS  Google Scholar 

  39. K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07706.x

    Article  CAS  Google Scholar 

  40. X. Li, W.H. Shih, J. Am. Ceram. Soc. 80, 2844 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03202.x

    Article  CAS  Google Scholar 

  41. A. Dulmaa, F.G. Cougnon, R. Dedoncker, D. Depla, Acta Mater. 212, 116896 (2021). https://doi.org/10.1016/j.actamat.2021.116896

    Article  CAS  Google Scholar 

  42. E. Almahmoud, I. Kornev, L. Bellaiche, Phys. Rev. B 81, 064105 (2010). https://doi.org/10.1103/PhysRevB.81.064105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Leading Foreign Research Institute Recruitment Program (No. 2017K1A4A3015437) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT and the Korea Electrotechnology Research Institute (KERI) Primary research program (No. 22A01007) through the National Research Council of Science and Technology (NST) funded by the Ministry of Science and ICT (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook Jo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Park, JH., Cho, JH. et al. Preparation of multiferroic lead iron niobate thin film with low crystallization temperature via sol–gel method using monoethanolamine. J. Korean Ceram. Soc. 60, 840–844 (2023). https://doi.org/10.1007/s43207-023-00301-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00301-9

Keywords

Navigation