Skip to main content

Advertisement

Log in

The effect of carbon fiber length on the microstructure, selected mechanical, wear, and thermal conductivity of Cf/SiC composite fabricated via spark plasma sintering (SPS) method

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This research aims to fabricate and develop a composite brake disc made of carbon/silicon carbide. For this purpose, the first silicon carbide nanoparticles were ultrasonicated with alumina sintering aid and carbon fiber (between 10 and 20%) with different lengths of 3 mm, 10 mm, and 15 mm. Next, the final Cf/SiC composite bulk was made-up via the spark plasma sintering (SPS) method. After that, the effect of different lengths of carbon fiber was explored on the porosity, coefficient of friction, fracture toughness, thermal conductivity, and microhardness of samples. The results showed that the density of sintered samples with a carbon fiber length of 10 mm was higher than that of samples with fiber lengths of 3 and 15 mm. Also, the hardness (25.79 GPa) and fracture toughness (5.72 MPa.m1/2) of this sample were higher than those of the samples sintered with carbon fiber lengths of 3 and 15 mm. Further, this sample with the maximum density showed a coefficient of friction (COF) of 0.43. Since for aeroplane brake discs, the COF should be between 0.3 and 0.4, and the porosity of samples should range within 3–5%, the samples sintered with the carbon fiber length of 10 mm had the nearby features to the preferred air brake disc indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the author upon a reasonable request.

References

  1. J. D. Holme, Disk brake rotor with grey cast iron composition, European Patent EP1034317, (2002)

  2. W. Li, G. Long, F. Shi, S. Zhou, J. Yin, J. Yang, Influence of the fiber orientation on 3D C/C–SiC composite material and its formation mechanism of the machining surface. Int. J. Adv. Manufact. Technol. 118, 2725–2743 (2022)

    Article  Google Scholar 

  3. Z. Ye, Y. Wang, Q. Wen, Y. Liu, C. Liu, X. Xiong, Effects of density and heat treatment of C/C preforms on microstructure and mechanical properties of C/C–SiC composites. Int. Appl. Ceram. Technol. 20, 112–124 (2022)

    Article  Google Scholar 

  4. W. Krenkel, B. Heidenreich, R. Renz, C/C-SiC composites for advanced friction systems. Adv. Eng. Mat. 4, 427–436 (2002)

    Article  CAS  Google Scholar 

  5. N.Ngafwan, H. Rasyid, E.S Abood, W.K Abdelbasset, S.G. Al-Shawi, D.Bokov, A. T.Jalil, Study on novel fluorescent carbon nanomaterials in food analysis. Food Sci. Technol. 42 (2021)

  6. R. Zhao, S. Pang, C. Hu, J. Li, B. Liang, S. Tang, H.-M. Cheng, Fabrication of C/SiC composites by siliconizing carbon fiber reinforced nanoporous carbon matrix preforms and their properties. J. Europ. Ceram. Soc. 43, 273–282 (2023)

    Article  CAS  Google Scholar 

  7. H.S. Budi, A. Davidyants, M. Rudiansyah, M.J. Ansari, W. Suksatan, M.Q. Sultan, M. Kazemnejadi, Alendronate reinforced polycaprolactone-gelatin-graphene oxide: a promising nanofibrous scaffolds with controlled drug release. Mater. Today Commun. 32, 104108 (2022)

    Article  CAS  Google Scholar 

  8. J. Schule-Fischedick, A. Zern, J. Mayer, M. Ruhle, M. Frieß, W. Krenkel, R. Kochendorfer, The morphology of silicon carbide in C/C–SiC composites. Mat. Sci. Eng. 332, 146–152 (2002)

    Article  Google Scholar 

  9. W. Krenkel, Designing with C/C-SiC composites. Ceram Trans. 153, 103–123 (2004)

    Google Scholar 

  10. W. Krenkel, F. Berndt, C/C–SiC composites for space applications and advanced friction systems. Mat. Sci. Eng. A 412, 177–181 (2005)

    Article  Google Scholar 

  11. D. Zhao, H. Cui, J. Liu, H. Cheng, Q. Guo, P. Gao, R. Li, Q. Li, W. Hou, A high-efficiency technology for manufacturing aircraft carbon brake discs with stable friction performance. Coatings 6, 768 (2022)

    Article  Google Scholar 

  12. D. Zheng, X. Zhao, K. An, L. Chen, Y. Zhao, X. Qu, H. Yin, Effects of Fe and graphite on friction and wear properties of brake friction materials for high-speed and heavy-duty vehicles. Tribol. Int. 178, 108061 (2022)

    Article  Google Scholar 

  13. Y. Liu, L. Ma, R. Dong, K. Cui, Y. Hou, W. Yang, Y. Liu, C. Zhong, G. Wen, Zhang, Binary Binder for Cf/C-SiC Composites with Enhanced Mechanical Property. Materials 8, 2757 (2022)

    Article  Google Scholar 

  14. V.I. Kulik, A.S. Nilov, E.A. Bogachev, High-temperature permanent joints of carbon fiber-reinforced ceramic-matrix composites with similar and other carbonaceous materials. Refract. Indust. Ceram. 1, 78–89 (2022)

    Article  Google Scholar 

  15. X. Zeng, H. Shao, R. Pan, B. Wang, Q. Deng, C. Zhang, T. Suo, Real-time damage analysis of 2D C/SiC composite based on spectral characters of acoustic emission signals using pattern recognition. Acta Mechani. Sinica 10, 1–18 (2022)

    Google Scholar 

  16. J. Qu, C. Xu, S. Meng, Experimental investigation on interlaminar and in-plane shear damage evolution of 2D C/SiC composites using acoustic emission and X-ray computed microtomography. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.12.089. (Inpress)

    Article  Google Scholar 

  17. M. Stalin, K. Rajaguru, L. Rangaraj, Processing of Cf/SiC composites by hot pressing using polymer binders followed by polymer impregnation and pyrolysis. J. Eur. Ceram. Soc. 40, 290–297 (2020)

    Article  CAS  Google Scholar 

  18. S. Tang, J. Deng, S. Wang, W. Lui, Fabrication and characterization of C/SiC composites with large thickness, high density and near-stoichiometric matrix by heater less chemical vapor infiltration. Mat. Sci. Eng. A. 465(1), 213–221 (2007)

    Google Scholar 

  19. N. Igawa et al., Fabrication of SiC fiber-reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties. J. Phys. Chem. Solids 66, 551–554 (2005)

    Article  CAS  Google Scholar 

  20. Z. Zhang, C. Fang, Y. Weng, X. Luo, Q. Huang, H. Hu, Effects of graphene addition on the microstructure and anti-ablation properties of C/C–SiC composites prepared by precursor impregnation and pyrolysis. Ceram. Int. 48, 25191–25201 (2022)

    Article  CAS  Google Scholar 

  21. Y. Liu, L. Cheng, L. Zhang, Y. Hua, W. Yang, Microstructure and properties of particle reinforced silicon carbide and silicon nitride ceramic matrix composites prepared by chemical vapour infiltration. Mat. Sci. Eng. 475, 217–223 (2007)

    Article  Google Scholar 

  22. R.S.M. Almeida, B. Besser, K. Tushtev, Y. Li, K. Rezwan, Fatigue behavior and damage analysis of PIP C/SiC composite. J. Eur. Ceram. Soc. 42, 5391–5398 (2022)

    Article  CAS  Google Scholar 

  23. C. Niu, Q. Zhang, L. Cheng, F. Ye, L. Zhang, Microstructure and mechanical properties of Cf/SiC composites with dispersed C-SiC interphase prepared by chemical vapor infiltration. Compos. Part A: Appl. Sci. Manufact. 165, 107339 (2023)

    Article  CAS  Google Scholar 

  24. X. Zhao, Y. Liu, Q. Wen, Y. Wang, Frictional performance of silicon carbide under different lubrication conditions. Friction 2, 58–63 (2014)

    Article  CAS  Google Scholar 

  25. M. Frei, W. Krenkel, K. Nestler & G. Marx, CVD-Coating of fabric sheets in combination with the LSI-Process, 4th Int. Con. on high Temp. Ceram. Matrix Comp., Wiley, Germany, 199-204 (2001)

  26. S. Tülbez, Z. Esen, A.F. Dericioglu, Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites. Adv. Compos. Hybrid Mat. 3, 177–186 (2020)

    Article  Google Scholar 

  27. Y. Shi, S. Li, E. Sitnikova, D. Cepli, D. Koch, Experimental evaluation and theoretical prediction of elastic properties and failure of C/C-SiC composite. Int. J. Appl. Ceram. Technol. 19, 7–21 (2022)

    Article  CAS  Google Scholar 

  28. S. Dong, Y. Katoh, A. Kohyama, Processing optimization and mechanical evaluation of hot pressed 2D Tyranno-SA/SiC composites. J. Am. Ceram. Soc. 23, 1223–1231 (2003)

    Article  CAS  Google Scholar 

  29. S. Agarwal, S. Sarkar, M. Das, A.R. Dixit, Tribo-mechanical characterization of spark plasma sintered chopped carbon fiber reinforced silicon carbide composites. Ceram. Int. 42, 18283–18288 (2016)

    Article  CAS  Google Scholar 

  30. S. Zahabi, E. Mohammad Sharifi, M.R. Dehnavi, M. Naderi, M.R. Loghman-Estarki, Investigation of density, phase, fracture toughness, thermal conductivity, and friction coefficient of Cf/SiC composite produced by the spark plasma sintering method. Ceram. Int. 47(19), 27553–27564 (2021)

    Article  CAS  Google Scholar 

  31. ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, 2003.

  32. Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM E-1461-01, 2003.

  33. ASTM C373: Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-tile Fired Ceramic Whiteware Products.

  34. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, J. Martikainen, Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by Vickers indentation test. J. Adv. Ceram. 2(1), 87–102 (2013)

    Article  CAS  Google Scholar 

  35. H. Latifi, A. Moradkhani, H. Baharvandi, J. Martikainen, Fracture toughness determination and microstructure investigation of a B4C–NanoTiB2 composite with various volume percent of Fe and Ni additives. Mat. Design (1980–2015) 62, 392–400 (2014)

    Article  CAS  Google Scholar 

  36. A. Moradkhani, H. Baharvandi, A. Naserifar, Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC nanocomposites. J. Korean Ceram. Soc. 56(3), 256–268 (2019)

    Article  CAS  Google Scholar 

  37. P. Zhang, Z. Liu, J. Liu, J. Yu, Q. Mai, X. Yue, Effect of aging plus cryogenic treatment on the machinability of 7075 aluminum alloy. Vacuum 208, 111692 (2023)

    Article  CAS  Google Scholar 

  38. P. Zhang, J. Liu, Y. Gao, Z. Liu, Q. Mai, Effect of heat treatment process on the micro machinability of 7075 aluminum alloy. Vacuum 207, 111574 (2023)

    Article  CAS  Google Scholar 

  39. Z. Zhang, J. Chen, J. Wang, Y. Han, Z. Yu, Q. Wang, P. Zhang, S. Yang, Effects of solder thickness on interface behavior and nanoindentation characteristics in Cu/Sn/Cu microbumps. Weld. World 66, 973–983 (2022)

    Article  Google Scholar 

  40. Q. Zhu, J. Chen, G. Gou, H. Chen, P. Li, Ameliorated longitudinal critically refracted—attenuation velocity method for welding residual stress measurement. J. Mat. Process. Technol. 246, 267–275 (2017)

    Article  Google Scholar 

  41. M. Al-Amin, H. T. Mumu, S. Sarker, M. Alam, & M. A. Gafur, Effects of sintering temperature and zirconia content on the mechanical and microstructural properties of MgO, TiO2 and CeO2 doped alumina–zirconia (ZTA) ceramic. J. Korean Ceram. Soc. 1–14 (2022)

  42. B.S. Kozekanan, A. Moradkhani, H. Baharvandi, V. Panahizadeh, The effect of nano-B4C additive on microstructure and mechanical properties of pressureless sintering SiC bodies. Mech. Adv. Compos. Struct. 10(1), 29–42 (2023)

    Google Scholar 

  43. B.S. Kozekanan, A. Moradkhani, H. Baharvandi, N. Ehsani, Thermodynamic and phase analysis of SiC-nano/microB4C-C composites produced by pressureless sintering method. J. Korean Ceram. Soc. 59(2), 180–192 (2022)

    Article  CAS  Google Scholar 

  44. M.E. Brito, P. Filip, C.A. Lewinsohn, A. Sayir, M. Opeka, Developments in advanced ceramics and composites (Journal of American Ceramic Soc, USA, 2005)

    Google Scholar 

  45. Y. Li, P. Xiao, Y. Shi, R.S.M. Almeida, W. Zhou, Z. Li, H. Luo, F. Reichert, N. Langh, W. Krenkel, Mechanical behavior of LSI based C/C-SiC composites subjected to flexural loadings. Compos. Part A: Appl. Sci. Manufact. 95, 315–324 (2017)

    Article  CAS  Google Scholar 

  46. D.L. Zhao, H.F. Yin, F. Luo, W.C. Zhou, Microstructure and mechanical properties of 3D textile C/SiC composites fabricated by chemical vapour infiltration. Adv. Mat. Res. 11–12, 81–84 (2006)

    Google Scholar 

  47. C.-H. Chu, Y.-M. Lu, M.-H. Hon, Growth characteristic of β-SiC by chemical vapour deposition. J. Mat. Sci. 27, 3883–3888 (1992)

    Article  CAS  Google Scholar 

  48. Y. Xu, L. Cheng, L. Zhang, H. Yin, C. You, Effects of chemical vapour infiltration atmosphere on the mechanical properties and microstructure of carbon fibers. J. Eur. Ceram. Soc. 21, 809–816 (2001)

    Article  CAS  Google Scholar 

  49. T. Noda, H. Araki, H. Suzuki, Processing of high-purity SiC composites by chemical vapour infiltration (CVI). J. Nu. Mat. 212–215, 823–829 (1994)

    Article  Google Scholar 

  50. Y. Wang, M. Sasaki, T. Goto, T. Hirai, Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition. J. Mat. Sci. 25, 4607–4613 (1990)

    Article  CAS  Google Scholar 

  51. Y. Zhang, Y. Xu, J. Lou, L. Zhang, L. Cheng, Braking Behavior of C/SiC composites prepared by chemical vapor infiltration. Int. J. App. Ceram. Tech. 2, 114–121 (2005)

    Article  CAS  Google Scholar 

  52. J. Zhong, S. Qiao, G. Lu, Y. Zhang, W. Han, D. Jai, Rapid fabrication of C/C/SiC composite by PIP of HMDS. J. Mat. Pro. Tech. 190, 358–362 (2007)

    Article  CAS  Google Scholar 

  53. L. Mingyuan, D. Yang, H. Wang, X. Zhou, Property evolvements in SiCf/SiC composites fabricated by a combination of PIP and electrophoretic deposition at different pyrolysis temperatures. Ceram. Int. 45, 15689–15695 (2019)

    Article  Google Scholar 

  54. SGL Carbon Group website: http://www.sglcarbon.com/sgl_t/fibers/pdf/panox_e.pdf, SGL Group website: http://www.sglcarbon.com/sgl_t/fibers/panox.html (last accessed 2010).

  55. SGLCarbonGroupwebsite: http://www.sglcarbon.com/sgl_t/brakedisc/products/auto.html (last accessed 2010

  56. Schunk website: http://www.schunkgroup. com/en/sgroup/press/archive/schunk01.c.35390.de (last accessed 2010)., SGL Group website: http://www.sglcarbon.com/sgl_t/fibers/panox.html last accessed 2010).

  57. W. Krenkel, C/C-SiC composites for hot structures and advanced friction systems. Mat. Sci. & Eng. 412, 583–592 (2005)

    Article  Google Scholar 

  58. DLR website: http://www.dlr.de/bk/en/desktopdefault.aspx/tabid-2499/6930_read-10079/ (last accessed 2010), A. Lacombe, Friction system using refractory composite materials, Patent number: 5007508 (1991)

  59. S. Wang, Z. Chen, F. Li, H. Hu, Mechanical properties of C/SiC composites via precursor pyrolysis with pretreated carbon fiber. Key Eng. Mat. 336–338, 1245–1247 (2007)

    Article  Google Scholar 

  60. F.I. Hurwitz, T.A. Kacik, X.Y. Bu, J. Masnovi, P.J. Heiman, K. Beyene, Pyrolytic conversion of methyl- and vinylsilane polymers to Si-C ceramics. J. Mat. Sci. 30, 3130–3136 (1995)

    Article  CAS  Google Scholar 

  61. L. Song, Y. Chen, Q. Gao, Z. Li, X. Zhang, H. Wang, L. Guan, Z. Yu, R. Zhang, B. Fan, Low Weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of Three-Dimensional Graphene/SiC-nanosheets aerogel. Compos. Part A. Appl. Sci. Manuf. 158, 106980 (2022)

    Article  CAS  Google Scholar 

  62. L. Song, B. Fan, Y. Chen, Q. Gao, Z. Li, H. Wang, X. Zhang, L. Guan, H. Li, R. Zhang, Ultralight and hyperelastic SiC nanofiber aerogel spring for personal thermal energy regulation. J. Adv. Ceram. 11, 1235–1248 (2022)

    Article  Google Scholar 

  63. S. Fan, L. Zhang, Y. Xu, L. Cheng, J. Lou, J. Zhang, L. Yu, Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials. Compos. Sci. Technol. 12, 2390–2398 (2007)

    Article  Google Scholar 

  64. Y. Zhang, Y. Xu, J. Lou, L. Zhang, L. Cheng, J. Lou, Z. Chen, Braking behavior of C/SiC composites prepared by chemical vapor infiltration. Int. J. Appl. Ceram. Technol. 2, 114–121 (2005)

    Article  CAS  Google Scholar 

  65. W. Krenkel, J. M. Hausherr, T. Reimer, and M. Frie. Design, manufacture and quality assurance of C/C-SiC composites for space transportation systems. In Proceedings of the 28th International Conference on Advanced Ceramics and Composites: B, Ceram. Eng. Sci. Proceed., Cocoa Beach, FL, USA, 1, 49–58 (2004)

  66. W. Krenkel, Carbon fiber reinforced CMC for high-performance structures. Int. J. Appl. Ceram. Technol. 2, 188–200 (2004)

    Google Scholar 

  67. L. Zhang, J. Huang, Z. Hu, X. Li, T. Ding, X. Hou, Z. Chen, Z. Ye, R. Luo, Ni(NO3)2-induced high electrocatalytic hydrogen evolution performance of self-supported fold-like WC coating on carbon fiber paper prepared through molten salt method. Electrochim. Acta 422, 140553 (2022)

    Article  CAS  Google Scholar 

  68. M. Xi, C. He, H. Yang, X. Fu, L. Fu, X. Cheng, J. Guo, Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents. Chinese Chem. Lett. 33, 2595–2599 (2022)

    Article  CAS  Google Scholar 

  69. C. Liu, P. Ying, Theoretical study of novel B–C–O compounds with non-diamond isoelectronic. Chin. Phys. B 31, 026201 (2022)

    Article  Google Scholar 

  70. C. Sheng, G. He, Z. Hu, C. Chou, J. Shi, J. Li, Q. Meng, X. Ning, L. Wang, F. Ning, Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber. J. Engin. Fibers and Fabrics 16, 15589250211052766 (2021)

    CAS  Google Scholar 

  71. H. Khorshidi, C. Zhang, E. Najafi, M. Ghasemi, Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: a comprehensive review. J. Clean. Prod. 384, 135390 (2022)

    Google Scholar 

  72. H. Zhu, R. Zhao, Isolated Ni atoms induced edge stabilities and equilibrium shapes of CVD-prepared hexagonal boron nitride on the Ni (111) surface. New J. Chem. 46, 17496–17504 (2022)

    Article  CAS  Google Scholar 

  73. X. Liu, J. Liu, H. Yang, B. Huang, G. Zeng, Design of a high-performance graphene/SiO2-Ag periodic grating/MoS2 surface plasmon resonance sensor. Appl. Opt. 61, 6752–6760 (2022)

    Article  CAS  Google Scholar 

  74. Q. Zhao, J.L.H. Yang, H. Liu, G. Zeng, B. Huang, J. Jia, Double U-groove temperature and refractive index photonic crystal fiber sensor based on surface plasmon resonance. Appl. Optics 61, 7225–7230 (2022)

    Article  CAS  Google Scholar 

  75. X. Zhang, X. Sun, T. Lv, L. Weng, M. Chi, J. Shi, S. Zhang, Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 31, 13344–13351 (2020)

    Article  CAS  Google Scholar 

  76. G. Zhao, L. Shi, G. Yang, X. Zhuang, B. Cheng, 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. J. Mater. Chem. A. 11, 512–547 (2023)

    Article  CAS  Google Scholar 

  77. P. Zhang, Z. Liu, X. Yue, P. Wang, Y. Zhai, Water jet impact damage mechanism and dynamic penetration energy absorption of 2A12 aluminum alloy. Vacuum 206, 111532 (2022)

    Article  CAS  Google Scholar 

  78. M. Sharifpur, M.H. Ahmadi, J. Rungamornrat, F. Malek Mohsen, Thermal management of solar photovoltaic cell by using single walled carbon nanotube (SWCNT)/water: numerical simulation and sensitivity analysis. Sustainability 14, 11523 (2022)

    Article  CAS  Google Scholar 

  79. N.K.A. Dwijendra, I. Patra, Y.M. Ahmed, Y.M. Hasan, Z. Mohsen Najm, Z.I. Al Mashhadani, A. Kumar, Carbonyl sulfide gas detection by pure, Zn-and Cd-decorated AlP nano-sheet. Monatsh. für Chemie-Chem. Monthly 153, 873–880 (2022)

    Article  CAS  Google Scholar 

  80. M.A. Asif, A theoretical study of the size effect of carbon nanotubes on the removal of water chemical contaminants. J. Res. Sci. Eng. Technol. 6, 21–27 (2018)

    Google Scholar 

  81. J. Müssig, N. Graupner, Test methods for fibre/matrix adhesion in cellulose fibre-reinforced thermoplastic composite materials: a critical review. Progress Adhes. Adhes. 6, 69–130 (2021)

    Article  Google Scholar 

  82. H.B. Baniya, R.P. Guragain, D.P. Subedi, Cold atmospheric pressure plasma technology for modifying polymers to enhance adhesion: a critical review. Progress Adhes. Adhes. 6, 841–879 (2021)

    Article  Google Scholar 

  83. T.A. Jalil, S. Hussain Dilfy, S. Oudah Meza, S. Aravindhan, M.M. Kadhim, M. Aljeboree, CuO/ZrO2 nanocomposites: facile synthesis, characterization and photocatalytic degradation of tetracycline antibiotic. J. Nanostruct. 11, 333–346 (2021)

    CAS  Google Scholar 

  84. I. Raya, S. Chupradit, M.M. Kadhim, M.Z. Mahmoud, A.T. Jalil, A. Surendar, S. Tuama Ghafel, Y. Fakri Mustafa, A.N. Bochvar, Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-PC-based amorphous alloys. Chin. Phys. B 31, 016401 (2022)

    Article  Google Scholar 

  85. X. Hu, A. Hossein Derakhshanfard, I. Khalid, A.T. Jalil, M.J. Catalan Opulencia, R. Balali Dehkordi, D. Toghraie, M. Hekmatifar, R. Sabetvand, The microchannel type effects on water-Fe3O4 nanofluid atomic behavior: molecular dynamics approach. J. Taiwan Inst. Chem. Eng. 135, 104396 (2022)

    Article  CAS  Google Scholar 

  86. R. Sivaraman, I. Patra, M. Jade Catalan Opulencia, R. Sagban, H. Sharma, A. Turki Jalil, A. Ghaffar Ebadi, Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries. J. Electroanal. Chem. 917, 116413 (2022)

    Article  CAS  Google Scholar 

  87. S.A. Jasim, J.M. Hadi, M.J.C. Opulencia, Y.S. Karim, A.B. Mahdi, M.M. Kadhim, D.O. Bokov, A.T. Jalil, Y.F. Mustafa, K.T. Falih, MXene/metal and polymer nanocomposites: preparation, properties, and applications. J. Alloys Compds. 917, 165404 (2022)

    Article  CAS  Google Scholar 

  88. O.D. Salahdin, H. Sayadi, R. Solanki, R.M.R. Parra, M. Al-Thamir, A.T. Jalil, S. Emad Izzat, A.T. Hammid, L.A.B. Arenas, E. Kianfar, Graphene and carbon structures and nanomaterials for energy storage. Appl. Phys. A 128, 703 (2022)

    Article  CAS  Google Scholar 

  89. I. Raya, S. Chupradit, M.M. Kadhim, M.Z. Mahmoud, A.T. Jalil, A. Surendar, A.N. Bochvar, Role of compositional changes on thermal, magnetic and mechanical properties of Fe-PC-based amorphous alloys. Chin. Phys. B 31, 016401 (2021)

    Article  Google Scholar 

  90. K. Hachem, S.A. Jasim, M.E. Al-Gazally, Y. Riadi, G. Yasin, A. Turki Jalil, A. DehnoKhalaji, Adsorption of Pb (II) and Cd (II) by magnetic chitosan-salicylaldehyde Schiff base: synthesis, characterization, thermal study and antibacterial activity. J. Chin. Chem. Soc. 69, 512–521 (2022)

    Article  CAS  Google Scholar 

  91. B. Liu, I. Khalid, I. Patra, O.R. Kuzichkin, R. Sivaraman, A.T. Jalil, M. Hekmatifar, The effect of hydrophilic and hydrophobic surfaces on the thermal and atomic behavior of ammonia/copper nanofluid using molecular dynamics simulation. J. Mol. Liq. 364, 119925 (2022)

    Article  CAS  Google Scholar 

  92. G. Zhao, M. Hooman, M. Yarigarravesh, M. Algarni, M.J.C. Opulencia, F. Alsaikhan, M.S. Sarjadi, Vibration analysis of size dependent micro FML cylindrical shell rein, forced by CNTs based on modified couple stress theory. Arab. J. Chem. 15(10), 104115 (2022)

    Article  CAS  Google Scholar 

  93. W. Krenkel, R. Kockendorfer, Brake disk for disk brakes. Patent number 6308808, B1 (2001)

    Google Scholar 

  94. S.A. Jasim, J.M. Hadi, M.J.C. Opulencia, Y.S. Karim, A.B. Mahdi, M.M. Kadhim, K.T. Falih, MXene/metal and polymer nanocomposites: preparation, properties, and applications. J. Alloy. Compd. 917, 165404 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the INSF Grant number 4014000 and Malek Ashtar university of technology for the financial support of this project. This work is based upon research funded by Iran National Science Foundation (INSF) under project No. 4014000.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to conceptualization, data curation, funding acquisition, investigation, methodology, and project administration.

Corresponding authors

Correspondence to Mazaher Ramazani or Mohammad Reza Loghman Estarki.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal associations that could have appeared to stimulate the work reported in this paper.

Ethical approval

Hereby, I, as the corresponding author, affirm that all authors have thoroughly read the Journal Policy. Here, I assert that this contribution is original and has not been published anywhere. In addition, I declare that this article does not contain any plagiarized materials.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Ramazani, M., Bakhshi, S.R. et al. The effect of carbon fiber length on the microstructure, selected mechanical, wear, and thermal conductivity of Cf/SiC composite fabricated via spark plasma sintering (SPS) method. J. Korean Ceram. Soc. 60, 732–745 (2023). https://doi.org/10.1007/s43207-023-00300-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00300-w

Keywords

Navigation