Skip to main content
Log in

Tuning the physical properties of Sb-doped ZnO nanopowders toward elevated photosensing and photocatalytic activity

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This report outlines the photo sensing and photocatalytic properties of the Sb-doped ZnO nanopowders synthesized using the co-precipitation method. According to X-ray diffraction analyses, the produced nanopowders are polycrystalline and devoid of any secondary phase clusters. After antimony was added to the ZnO host matrix, a reduction in crystallite size was noticed. The distinct stretching vibrational modes (Zn–O and Sb–O) present in the produced nanopowders are validated using FTIR measurements. The bandgap shrinkage from 3.21 to 3.16 eV was obtained with the substitution of 5 wt% antimony in the ZnO matrix. In the case of Sb doped nanopowder samples, the reduction in ultraviolet band emission intensity was observed signifying the delayed photo-generated charge carriers recombination, which could favor the photo sensing and photocatalytic activity in ZnO. The photo sensing of the fabricated devices showed maximum responsivity (R), detectivity (D*), and external quantum efficiency (EQE) of 4.78 × 10–2 AW−1, 4.27 × 109 Jones and 11.1%, respectively for the 5% Sb-doped ZnO nanopowder. In addition, the 5% Sb-doped ZnO nanopowder photocatalysts reveal a superior degradation efficiency of 77% among other prepared photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  1. M.A. Borysiewicz, ZnO as a Functional Material, a review. Crystals 9, 505 (2019). https://doi.org/10.3390/cryst9100505

    Article  CAS  Google Scholar 

  2. A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185–186, 1–22 (2012). https://doi.org/10.1016/j.cej.2012.01.076

    Article  CAS  Google Scholar 

  3. L. Shi, F. Wang, B. Li, X. Chen, B. Yao, D. Zhao, D. Shen, A highly efficient UV photodetector based on a ZnO microwire p-n homojunction. J. Mater. Chem. C. 2, 5005–5010 (2014). https://doi.org/10.1039/c3tc32547d

    Article  CAS  Google Scholar 

  4. T. Yamamoto, H. Katayama, Yoshida, solution using a codoping method to unipolarity for the fabrication of p-Type ZnO. Jpn. J. Appl. Phys. 38, L166–L169 (1999). https://doi.org/10.1143/JJAP.38.L166

    Article  CAS  Google Scholar 

  5. M.G. Kakazey, V.A. Melnikova, T. Sreckovic, T.V. Tomila, M.M. Ristic, Evolution of the microstructure of disperse Zinc-oxide during tribophysical activation. J. Mater. Sci. 34, 1691–1697 (1999). https://doi.org/10.1023/A:1004553305665

    Article  CAS  Google Scholar 

  6. E. Baeissa, Photocatalytic degradation of methylene blue dye under visible light irradiation using In/ZnO nanocomposite. Front. Nanosci. Nanotechnol. 2, 1–5 (2016). https://doi.org/10.15761/fnn.1000134

    Article  Google Scholar 

  7. K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S. yuan Liu, H. Lin, G. Wang, Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies. Ceram. Int. 46, 1494–1502 (2020). https://doi.org/10.1016/j.ceramint.2019.09.116

    Article  CAS  Google Scholar 

  8. S. Singh, S.H. Park, A study of Al:ZnO based MSM UV sensors with Ni metal electrodes. Optik (Stuttg). 145, 576–581 (2017). https://doi.org/10.1016/j.ijleo.2017.08.027

    Article  CAS  Google Scholar 

  9. M. Barjasteh-Moghaddam, A. Habibi-Yangjeh, Preparation of Zn 1–x Mn x O nanoparticles by a simple “green” method and photocatalytic activity under visible light irradiation. Int. J. Mater. Res. 102, 1397–1402 (2011). https://doi.org/10.3139/146.110598

    Article  CAS  Google Scholar 

  10. H.H. Mohamed, D.W. Bahnemann, The role of electron transfer in photocatalysis: fact and fictions. Appl. Catal. B Environ. 128, 91–104 (2012). https://doi.org/10.1016/j.apcatb.2012.05.045

    Article  CAS  Google Scholar 

  11. B. Sahoo, D. Behera, S.K. Pradhan, D.K. Mishra, S.K. Sahoo, R.R. Nayak, K.P.C. Sekhar, Analysis of structural, optical and electrical properties of nano-particulate indium doped zinc oxide thin films. Mater. Res. Express. 6, 1150a6 (2019). https://doi.org/10.1088/2053-1591/ab4cbd

    Article  Google Scholar 

  12. E. Pál, V. Hornok, A. Oszkó, I. Dékány, Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures. Coll. Surf. A Physicochem. Eng. Asp. 340, 1–9 (2009). https://doi.org/10.1016/j.colsurfa.2009.01.020

    Article  CAS  Google Scholar 

  13. C. Karunakaran, P. Gomathisankar, G. Manikandan, Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Mater. Chem. Phys. 123, 585–594 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.019

    Article  CAS  Google Scholar 

  14. X. Jia, H. Fan, M. Afzaal, X. Wu, P. O’Brien, Solid state synthesis of tin-doped ZnO at room temperature: characterization and its enhanced gas sensing and photocatalytic properties. J. Hazard. Mater. 193, 194–199 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.049

    Article  CAS  Google Scholar 

  15. C. Jing, Y. Jiang, W. Bai, J. Chu, A. Liu, Synthesis of Mn-doped ZnO diluted magnetic semiconductors in the presence of ethyl acetoacetate under solvothermal conditions. J. Magn. Magn. Mater. 322, 2395–2400 (2010). https://doi.org/10.1016/j.jmmm.2010.02.044

    Article  CAS  Google Scholar 

  16. S.H. Kim, A. Umar, Y.K. Park, J.-H. Kim, E.W. Lee, Y.B. Hahn, Non-catalytic growth of high-aspect-ratio Sb-doped ZnO nanowires by simple thermal evaporation process: structural and optical properties. J. Alloys Compd. 479, 290–293 (2009). https://doi.org/10.1016/j.jallcom.2008.11.106

    Article  CAS  Google Scholar 

  17. D.W. Zeng, C.S. Xie, B.L. Zhu, R. Jiang, X. Chen, W.L. Song, J.B. Wang, J. Shi, Controlled growth of ZnO nanomaterials via doping Sb. J. Cryst. Growth. 266, 511–518 (2004). https://doi.org/10.1016/j.jcrysgro.2004.03.014

    Article  CAS  Google Scholar 

  18. A.E. Kasapoğlu, S. Habashyani, A. Baltakesmez, D. İskenderoğlu, E. Gür, The effect of the change in the amount of Sb doping in ZnO nanorods for hydrogen gas sensors. Int. J. Hydrog. Energy. 46, 21715–21725 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.229

    Article  CAS  Google Scholar 

  19. R. Nasser, W.B.H. Othmen, H. Elhouichet, Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceram. Int. 45, 8000–8007 (2019). https://doi.org/10.1016/j.ceramint.2018.12.089

    Article  CAS  Google Scholar 

  20. S.V. Mohite, K.Y. Rajpure, Synthesis and characterization of Sb doped ZnO thin films for photodetector application. Opt. Mater. (Amst) 36, 833–838 (2014). https://doi.org/10.1016/j.optmat.2013.12.007

    Article  CAS  Google Scholar 

  21. Z. Yao, K. Tang, Y. Xu, Q. Du, J. Li, L. Hao, Y. Shen, S. Zhu, S. Gu, Synthesis, characterization and UV photodetector application of Sb-doped ZnO nanowires. J. Lumin. 221, 117025 (2020). https://doi.org/10.1016/j.jlumin.2019.117025

    Article  CAS  Google Scholar 

  22. D. Kim, W. Kim, S. Jeon, K. Yong, Highly efficient UV-sensing properties of Sb-doped ZnO nanorod arrays synthesized by a facile, single-step hydrothermal reaction. RSC Adv. 7, 40539–40548 (2017). https://doi.org/10.1039/c7ra07157d

    Article  CAS  Google Scholar 

  23. N. Fathima, N. Pradeep, J. Balakrishnan, Enhanced optical and electrical properties of antimony doped ZnO nanostructures based MSM UV photodetector fabricated on a flexible substrate. Mater. Sci. Semicond. Process. 90, 26–31 (2019). https://doi.org/10.1016/j.mssp.2018.10.002

    Article  CAS  Google Scholar 

  24. A. Omidi, A. Habibi-Yangjeh, M. Pirhashemi, Application of ultrasonic irradiation method for preparation of ZnO nanostructures doped with Sb+3 ions as a highly efficient photocatalyst. Appl. Surf. Sci. 276, 468–475 (2013). https://doi.org/10.1016/j.apsusc.2013.03.118

    Article  CAS  Google Scholar 

  25. R. Nasser, W.B.H. Othmen, H. Elhouichet, M. Férid, Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity. Appl. Surf. Sci. 393, 486–495 (2017). https://doi.org/10.1016/j.apsusc.2016.09.158

    Article  CAS  Google Scholar 

  26. O. Celik, Ş Baturay, Y.S. Ocak, Sb doping influence on structural properties of ZnO thin films. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab6c8a

    Article  Google Scholar 

  27. T. Yang, B. Yao, T.T. Zhao, G.Z. Xing, H.Z. Wang, H.L. Pan, R. Deng, Y.R. Sui, L.L. Gao, H.Z. Wang, T. Wu, D.Z. Shen, Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes. J. Alloys Compd. 509, 5426–5430 (2011). https://doi.org/10.1016/j.jallcom.2011.02.080

    Article  CAS  Google Scholar 

  28. X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Structural and photoluminescence properties of aligned Sb-doped ZnO nanocolumns synthesized by the hydrothermal method. Thin Solid Films 518, 5687–5689 (2010). https://doi.org/10.1016/j.tsf.2010.04.031

    Article  CAS  Google Scholar 

  29. J.K. Liang, H.L. Su, C.L. Kuo, S.P. Kao, J.W. Cui, Y.C. Wu, J.C.A. Huang, Structural, optical and electrical properties of electrodeposited Sb-doped ZnO nanorod arrays. Electrochim. Acta. 125, 124–132 (2014). https://doi.org/10.1016/j.electacta.2014.01.029

    Article  CAS  Google Scholar 

  30. D.W. Zeng, C.S. Xie, B.L. Zhu, W.L. Song, A.H. Wang, Synthesis and characteristics of Sb-doped ZnO nanoparticles. Mater. Sci. Eng. B. 104, 68–72 (2003). https://doi.org/10.1016/S0921-5107(03)00314-3

    Article  CAS  Google Scholar 

  31. K. Ravichandran, N. Chidhambaram, T. Arun, S. Velmathi, S. Gobalakrishnan, Realizing cost-effective ZnO: Sr nanoparticles@graphene nanospreads for improved photocatalytic and antibacterial activities. RSC Adv. 6, 67575–67585 (2016). https://doi.org/10.1039/C6RA08697G

    Article  CAS  Google Scholar 

  32. R.E. Adam, G. Pozina, M. Willander, O. Nur, Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics Nanostructures Fundam. Appl. 32, 11–18 (2018). https://doi.org/10.1016/J.PHOTONICS.2018.08.005

    Article  Google Scholar 

  33. A.N. El-Shazly, M.M. Rashad, E.A. Abdel-Aal, I.A. Ibrahim, M.F. El-Shahat, A.E. Shalan, Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes. J. Environ. Chem. Eng. 4, 3177–3184 (2016). https://doi.org/10.1016/j.jece.2016.06.018

    Article  CAS  Google Scholar 

  34. Z. Mohammad Redha, H. Abdulla Yusuf, S. Burhan, I. Ahmed, Facile synthesis of ZnO nanospheres by co-precipitation method for photocatalytic degradation of azo dyes: optimization via response surface methodology. Int. J. Energy Environ. Eng. 12, 453–466 (2021). https://doi.org/10.1007/s40095-020-00380-y

    Article  CAS  Google Scholar 

  35. S. Jagadhesan, N. Senthilkumar, V. Senthilnathan, T.S. Senthil, Sb doped ZnO nanostructures prepared via co-precipitation approach for the enhancement of MB dye degradation. Mater. Res. Express. 5, 1–68 (2018). https://doi.org/10.1088/2053-1591/aaaf80

    Article  CAS  Google Scholar 

  36. A. Phuruangrat, W. Kongpet, O. Yayapao, B. Kuntalue, S. Thongtem, T. Thongtem, Ultrasonic-assisted synthesis, characterization, and optical properties of Sb doped ZnO and their photocatalytic activities. J. Nanomater. 2014, 1–10 (2014). https://doi.org/10.1155/2014/725817

    Article  CAS  Google Scholar 

  37. M. Laurenti, N. Garino, N. Garino, G. Canavese, S. Hernandéz, V. Cauda, Piezo- and photocatalytic activity of ferroelectric ZnO: Sb thin films for the efficient degradation of rhodamine-β dye pollutant. ACS Appl. Mater. Interfaces. 12, 25798–25808 (2020). https://doi.org/10.1021/acsami.0c03787

    Article  CAS  Google Scholar 

  38. M.A. Tagliente, M. Massaro, Strain-driven (0 0 2) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl. Instrum Methods Phys. Res. Sect B Beam Interact. with Mater. Atoms. 266, 1055–1061 (2008). https://doi.org/10.1016/j.nimb.2008.02.036

    Article  CAS  Google Scholar 

  39. D. Anbuselvan, S. Nilavazhagan, A. Santhanam, N. Chidhambaram, K.V. Gunavathy, T. Ahamad, S.M. Alshehri, Room temperature ferromagnetic behavior of nickel-doped zinc oxide dilute magnetic semiconductor for spintronics applications. Phys. E Low-Dimensional Syst. Nanostructures. 129, 114665 (2021). https://doi.org/10.1016/j.physe.2021.114665

    Article  CAS  Google Scholar 

  40. O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route. J. Phys. Chem. C. 114, 12401–12408 (2010). https://doi.org/10.1021/jp910263n

    Article  CAS  Google Scholar 

  41. S. Jessadaluk, N. Khemasiri, P. Rattanawarinchai, N. Kayunkid, S. Rahong, A. Rangkasikorn, S. Wirunchit, A. Klamchuen, J. Nukeaw, Electroreflectance study of antimony doped ZnO thin films grown by pulsed laser deposition. Opt. Mater. (Amst). 120, 111461 (2021). https://doi.org/10.1016/j.optmat.2021.111461

    Article  CAS  Google Scholar 

  42. A.H. Abdullah, N.H.M. Noor, I. Ramli, M. Hashim, Effect of precipitation route on the properties of antimony trioxide. Mater. Chem. Phys. 111, 201–204 (2008). https://doi.org/10.1016/j.matchemphys.2008.04.041

    Article  CAS  Google Scholar 

  43. D. Jassby, J. Farner Budarz, M. Wiesner, Impact of aggregate size and structure on the photocatalytic properties of TiO 2 and ZnO nanoparticles. Environ. Sci. Technol. 46, 6934–6941 (2012). https://doi.org/10.1021/es202009h

    Article  CAS  Google Scholar 

  44. N. Khatun, E.G. Rini, P. Shirage, P. Rajput, S.N. Jha, S. Sen, Effect of lattice distortion on bandgap decrement due to vanadium substitution in TiO2 nanoparticles. Mater. Sci. Semicond. Process. 50, 7–13 (2016). https://doi.org/10.1016/j.mssp.2016.04.002

    Article  CAS  Google Scholar 

  45. M.M. Khan, S.A. Ansari, M.I. Amal, J. Lee, M.H. Cho, Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale 5, 4427 (2013). https://doi.org/10.1039/c3nr00613a

    Article  CAS  Google Scholar 

  46. R. Nasser, J.M. Song, H. Elhouichet, Epitaxial growth and properties study of p-type doped ZnO: Sb by PLD. Superlattices Microstruct. 155, 106908 (2021). https://doi.org/10.1016/j.spmi.2021.106908

    Article  CAS  Google Scholar 

  47. S. Simeonov, A. Szekeres, D. Spassov, M. Anastasescu, I. Stanculescu, M. Nicolescu, E. Aperathitis, M. Modreanu, M. Gartner, Investigation of the effects of rapid thermal annealing on the electron transport mechanism in nitrogen-doped ZnO thin films grown by RF magnetron sputtering. Nanomaterials 12, 19 (2021). https://doi.org/10.3390/nano12010019

    Article  CAS  Google Scholar 

  48. J. Kegel, F. Laffir, I.M. Povey, M.E. Pemble, Defect-promoted photo-electrochemical performance enhancement of orange-luminescent ZnO nanorod-arrays. Phys. Chem. Chem. Phys. 19, 12255–12268 (2017). https://doi.org/10.1039/C7CP01606A

    Article  CAS  Google Scholar 

  49. P. Pascariu, M. Homocianu, N. Olaru, A. Airinei, O. Ionescu, New electrospun ZnO:MoO3 nanostructures: preparation characterization and photocatalytic performance. Nanomaterials 10, 1476 (2020). https://doi.org/10.3390/nano10081476

    Article  CAS  Google Scholar 

  50. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001). https://doi.org/10.1063/1.1394173

    Article  CAS  Google Scholar 

  51. E. Przezdziecka, K.M. Paradowska, W. Lisowski, A. Wierzbicka, R. Jakiela, E. Zielony, Z. Gumienny, E. Placzek-Popko, A. Kozanecki, ZnO: Sb MBE layers with different Sb content-optical, electronic and structural analysis. J. Alloys Compd. 797, 1163–1172 (2019). https://doi.org/10.1016/j.jallcom.2019.05.213

    Article  CAS  Google Scholar 

  52. A.M. Alsmadi, B. Salameh, L.L. Kerr, K.F. Eid, Influence of antimony doping on the electronic, optical and luminescent properties of ZnO microrods. Phys. B. Condens. Matter. 545, 519–526 (2018). https://doi.org/10.1016/j.physb.2018.07.007

    Article  CAS  Google Scholar 

  53. K.M. Paradowska, E. Przeździecka, E. Płaczek-Popko, E. Zielony, M. Stachowicz, A. Kozanecki, Effect of annealing on photoluminescence and Raman scattering of Sb-doped ZnO epitaxial layers grown on a-Al2O3. J. Alloys Compd. 774, 1160–1167 (2019). https://doi.org/10.1016/j.jallcom.2018.09.379

    Article  CAS  Google Scholar 

  54. K.D.A. Kumar, P. Mele, S. Golovynskyi, A. Khan, A.M. El-Toni, A.A. Ansari, R.K. Gupta, H. Ghaithan, S. AlFaify, P. Murahari, Insight into Al doping effect on photodetector performance of CdS and CdS: Mg films prepared by self-controlled nebulizer spray technique. J. Alloys Compd. 892, 160801 (2022). https://doi.org/10.1016/j.jallcom.2021.160801

    Article  CAS  Google Scholar 

  55. M. Kumar, H. Jeong, D. Lee, UV photodetector with ZnO nanoflowers as an active layer and a network of Ag nanowires as transparent electrodes. Superlattices Microstruct. 126, 132–138 (2019). https://doi.org/10.1016/j.spmi.2018.12.004

    Article  CAS  Google Scholar 

  56. B. Hanna, K.P. Surendran, K.N. Narayanan Unni, Low temperature-processed ZnO thin films for p-n junction-based visible-blind ultraviolet photodetectors. RSC Adv. 8, 37365–37374 (2018). https://doi.org/10.1039/C8RA07312K

    Article  Google Scholar 

  57. R. Sarath Babu, Y.N. Murthy, I. Loyola Poul Raj, M.S. Revathy, N. Chidhambaram, V. Ganesh, H. Algarni, I.S. Yahia, Improved optoelectronic properties of Yttrium co-doped CdO: Zn thin films fabricated by nebulizer spray pyrolysis method for TCO applications. Phys. Scr. 96, 125860 (2021). https://doi.org/10.1088/1402-4896/ac3876

    Article  Google Scholar 

  58. K. Singh, N. Berwal, I. Rawal, S. Dahiya, R. Punia, R. Dhar, Determination of valence and conduction band offsets in Zn0.98Fe0.02O/ZnO hetero-junction thin films grown in oxygen environment by pulsed laser deposition technique: a study of efficient UV photodetectors. J. Alloys Compd. 768, 978–990 (2018). https://doi.org/10.1016/j.jallcom.2018.07.303

    Article  CAS  Google Scholar 

  59. S.S. Kumar, N. Chidhambaram, K. Deva Arun Kumar, R.S.R. Isaac, A.A. Abdeltawab, S.Z. Mohammady, M. Ubaidullah, S.F. Shaik, Impact of terbium inclusion on the photodetection performance of ZnO thin films. Semicond. Sci. Technol. (2021). https://doi.org/10.1088/1361-6641/abfadf

    Article  Google Scholar 

  60. T. Gnanasekar, S. Valanarasu, I.L. Poul Raj, A.V. Juliet, P.K. Behera, Z.M.M. Mahmoud, M. Shkir, S. AlFaify, Improved photocurrent properties of La doped CuO thin films coated by nebulizer spray pyrolysis method for photosensor applications. Opt. Mater. (Amst). 122, 111790 (2021). https://doi.org/10.1016/j.optmat.2021.111790

    Article  CAS  Google Scholar 

  61. C. Rama Krishna, M. Kang, Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692, 67–76 (2017). https://doi.org/10.1016/j.jallcom.2016.09.029

    Article  CAS  Google Scholar 

  62. V.K. Jayaraman, A.M. Álvarez, Y.M. Kuwabara, Y. Koudriavstev, M.D.L.L. Olvera Amador, Effect of co-doping concentration on structural, morphological, optical and electrical properties of aluminium and indium co-doped ZnO thin films deposited by ultrasonic spray pyrolysis. Mater. Sci. Semicond. Process. 47, 32–36 (2016). https://doi.org/10.1016/j.mssp.2016.02.011

    Article  CAS  Google Scholar 

  63. A. Rajan, H.K. Yadav, V. Gupta, M. Tomar, Fast response ultra-violet photodetectors based on sol gel derived gadoped ZnO. Procedia Eng. 94, 44–51 (2014). https://doi.org/10.1016/j.proeng.2013.11.046

    Article  CAS  Google Scholar 

  64. I.L.P. Raj, M.S. Revathy, A.J. Christy, N. Chidhambaram, V. Ganesh, S. AlFaify, Study on the synergistic effect of terbium-doped SnO2 thin film photocatalysts for dye degradation. J. Nanoparticle Res. 22, 359 (2020). https://doi.org/10.1007/s11051-020-05084-2

    Article  CAS  Google Scholar 

  65. N. Chidhambaram, S. Valanarasu, V. Ganesh, S. Gobalakrishnan, Unraveling the enhanced photocatalytic decomposition efficacy of the Al-doped ZnO nanoparticles@graphene sheets. J. Phys. D. Appl. Phys. 53, 465111 (2020). https://doi.org/10.1088/1361-6463/abaa6f

    Article  CAS  Google Scholar 

  66. S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015). https://doi.org/10.1039/C4RA13299H

    Article  CAS  Google Scholar 

  67. A. Omidi, A. Habibi-Yangjeh, Microwave-assisted method for preparation of Sb-doped ZnO nanostructures and their photocatalytic activity. J. Iran. Chem. Soc. 11, 457–465 (2014). https://doi.org/10.1007/s13738-013-0318-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors from King Khalid University (KKU) are grateful to the Deanship of Scientific Research at KKU for funding to carry this work through the research groups program under grant number R.G.P. 2/322/44.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Chidhambaram or V. Ganesh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies involving animals performed by any authors. Also, this article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 629 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S.S., Nirmala, W., Chidhambaram, N. et al. Tuning the physical properties of Sb-doped ZnO nanopowders toward elevated photosensing and photocatalytic activity. J. Korean Ceram. Soc. 60, 719–731 (2023). https://doi.org/10.1007/s43207-023-00298-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00298-1

Keywords

Navigation