Skip to main content
Log in

A DFT study of electronic structure and optical properties of the pure, doped and co-doped CaZrO3 perovskite for photovoltaic applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The present study investigates the effects, of V and/or N-doped CaZrO3 on the electronic and optical properties using spin-polarized density functional theory calculations. It was found that the obtained results of the pure CaZrO3 are in complete agreement with the experimental data. Moreover, the V and N impurities decrease and transform the sizeable electronic band gap from an indirect insulator (4.964 eV for the pure CaZrO3) to a direct semiconductor (1.369 eV for CaZr0.8750V0.1250O2.9584N0.0416). Hence, the absorption coefficient of CaZr0.8750V0.1250O2.9584N0.0416 structure is enhanced in the visible region which is quite remarkable for solar cells. In addition, the calculated enthalpies of formation confirm that all studied structures are thermodynamically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. L. Weston, A. Janotti, X.Y. Cui, C. Stampfl, C.G. Van de Walle, Hybrid functional calculations of point defects and hydrogen in SrZrO3. Phys. Rev. B 89, 184109 (2014)

    Article  Google Scholar 

  2. S.M. Alay-e-Abbas et al., Evaluation of thermodynamics, formation energetics and electronic properties of vacancy defects in CaZrO3. Sci. Rep 7, 8439 (2017)

    Article  Google Scholar 

  3. A. Yoko, J. Wang, N. Umezawa, T. Ohno, Y. Oshima, A-site cation bulk and surface diffusion in A-site-deficient BaZrO3 and SrZrO3 perovskites. J. Phys. Chem. C 121, 12220–12229 (2017)

    Article  CAS  Google Scholar 

  4. D. Amoroso, A. Cano, P. Ghosez, First-principles study of (Ba, Ca)TiO3 and Ba(Ti, Zr)O3 solid solutions. Phys. Rev. B 97, 174108 (2018)

    Article  CAS  Google Scholar 

  5. Z. Song, J. Zhao, Q. Liu, Luminescent perovskites: recent advances in theory and experiments. Inorg. Chem. Front 6, 2969–3011 (2019)

    Article  CAS  Google Scholar 

  6. I.L.V. Rosa et al., A theoretical investigation of the structural and electronic properties of orthorhombic CaZrO3. Ceram. Int 41, 3069–3074 (2014)

    Article  Google Scholar 

  7. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    Article  CAS  Google Scholar 

  8. B.M. Abraham, N. Yedukondalu, G. Vaitheeswaran, Structural, electronic and lattice dynamical properties of perovskite CaZrO3 under high pressure. AIP Conf. Proc. 1832, 090042 (2017)

    Article  Google Scholar 

  9. S. Akhtar, S.M. Alay-e-Abbas, J. Batool, W. Zulfiqar, A. Laref, G. Abbas, N. Amin, Investigation of structural, electronic and optical properties of (V+P)-doped BaZrO3 for photocatalytic applications using density functional theory. J. Phys. Chem. Solids 147, 109662 (2020)

    Article  CAS  Google Scholar 

  10. S. Dahbi, B. Mouhib, N. Tahiri, O. El Bounagui, O. Mounkachi, H. Ez-Zahraouy, An oxygen vacancy defect and chalcogens impurities in Earth-Abundant Lead-Free calcium zirconate perovskite for non-toxic solar cells: first-principles calculation. Mater. Today Commun. 33, 104847 (2022)

    Article  CAS  Google Scholar 

  11. Z. Guo, B. Pathalk, J. El Zhou, R. Ahuja, Z. Sun, Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis. Int. J. Hydrogen Energy 39, 2042–2048 (2014)

    Article  CAS  Google Scholar 

  12. J.W. Bennett, I. Grinberg, A.M. Rappe, Effect of symmetry lowering on the dieletric response of BaZrO3. Phys. Rev. B 73, 180102 (2006)

    Article  Google Scholar 

  13. D.W. Murphy, S. Sunshine, R.B.V. Dover, R.J. Cava, B. Batlogg, S.M. Zahurak, L.F. Schneemeyer, Phys. Rev. Lett 58, 188 (1987)

    Article  Google Scholar 

  14. S. Muhammad Alay-e-Abbas, S. Nazir, A. Shaukat, Formation energies and electronic structure of intrinsic vacancy defects and oxygen vacancy clustering in BaZrO3. Phys. Chem. Phys 18, 23737–23745 (2016)

    Article  CAS  Google Scholar 

  15. M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3330697 (1963).

  16. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, Perovskite oxides for visible-light-absorption ferroelectric and photovoltaic materials. Nature 503, 509–5012 (2013)

    Article  CAS  Google Scholar 

  17. G. Rog, M. Dudek, A. Kozlowska-Rog, M. Bucko, Calcium zirconate: preparation, properties and application to the Solid Oxide Galvanic Cells. Electrochim Acta 47, 4523–4529 (2002)

    Article  CAS  Google Scholar 

  18. S. Jonas, F. Nadachowskis, D. Szwagierczak, A new nano-silicate refractory of low thermal expansion. Ceram. Int 24, 211–216 (1998)

    Article  CAS  Google Scholar 

  19. Y. Du, Z.P. Jin, P.Y. Huang, Ceramic thermodynamic calculation of the zirconia calcia system. Am. Ceram. Soc 75, 3040 (1992)

    Article  CAS  Google Scholar 

  20. S. Sakaida, Y. Shimokawa, T. Asaka, S. Honda, Y. Iwamoto, Synthesis and characterization of Eu3+ doped CaZrO3-based perovskite-type phosphors. Part I: determination of the Eu3+ occupied site using the ALCHEMI technique. Mater. Res. Bull. 67, 146–151 (2015)

    Article  CAS  Google Scholar 

  21. H. Zhang, X. Fu, S. Niu, Q. Xin, Synthesis and photoluminescence properties of Eu3+ doped AZrO3 (A= Ca, Sr, Ba) perovskite. Alloys Comps 459, 103–106 (2008)

    Article  CAS  Google Scholar 

  22. T. Shimura, K. Esaka, H. Matsumoto, H. Iwahara, Protonic conduction in Rh-doped AZrO3 (A= Ba, Sr and Ca). Solid State Ionics 149, 237–246 (2002)

    Article  CAS  Google Scholar 

  23. N.L. Ross, T.D. Chaplin, Compressibility of CaZrO3 perovskite: comparison with Ca-oxide perovskites. J. Solid State Chem. 172, 123–126 (2003)

    Article  CAS  Google Scholar 

  24. Yang et al., A novel pressure-induced phase transition in CaZrO3. CrystEngComm 16, 4441–4446 (2014)

    Article  CAS  Google Scholar 

  25. Z.F. Hou, Ab initio calculations of elastic modulus and electronic structures of cubic CaZrO3. Phys. B 403, 2624–2628 (2008)

    Article  CAS  Google Scholar 

  26. P. Stoch, J. Szczerba, J. Lis, D. Madej, Z. Pedzich, Crystal structure and ab initio calculations of CaZrO3. Eur. Ceramic Soc. 32, 665–670 (2012)

    Article  CAS  Google Scholar 

  27. M.G. Brik, C.G. Ma, V. Krasnenko, First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces. Surf. Sci. 608, 146–153 (2013)

    Article  CAS  Google Scholar 

  28. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: Ab initio calculation. Opt. Mater. 109, 110442 (2020)

    Article  CAS  Google Scholar 

  29. A. Lamichhane, N.M. Ravindra, First-principles study of cubic alkaline-earth metal zirconate perovskites. J. Phys. Commun. 5, 035006 (2021)

    Article  CAS  Google Scholar 

  30. L.J. Sham, M. Schluter, Density-functional theory of the energy gap. Phys. Rev. Lett 51, 188861891 (1983)

    Article  Google Scholar 

  31. P. Blaha, K. Schwartz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties, 2nd edn. (Vienna University of Technology, References-Scientific Research Publishing, Vienna, 2001)

    Google Scholar 

  32. R.E. Cohen, H. Krakauer, Lattice dynamics and origin of ferroelectricity in BaTiO3: linearized-augmented-plane-wave total-energy calculation. Phys. Rev. B 42, 6416 (1970)

    Article  Google Scholar 

  33. J.A. Camargo-Martinez, R. Baquero, Performance of the modified Becke-Johnson potential for semiconductors. Phys B 86, 195106 (2012)

    Google Scholar 

  34. S. Chowdhury, R. Das, P. Nath, D. Jana, D. Sanyal, Electronic and optical properties of boron-and nitrogen-functionalized graphene nanosheet. Chem. Functionaliz. Carbon Nanomater. Chem. Appl. 42, 949–957 (2015)

    Google Scholar 

  35. P. Nath, S. Chowdhury, D. Sanyal, D. Jana, Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet. Carbon 73, 275 (2014)

    Article  CAS  Google Scholar 

  36. S. Chowdhury, P. Nath, D. Jana, Shape dependent magnetic and optical properties in silicene nanodisks: a first principles study. J. Phys. Chem. Solid 83, 32 (2015)

    Article  CAS  Google Scholar 

  37. R. Das, S. Chowdhury, A. Majumdar, D. Jana, Optical properties of P and Al doped silicence: a first principles study. RSC Adv. 5, 41 (2014)

    Article  Google Scholar 

  38. D. Jana, C.L. Sun, L.C. Chen, C.H. Chen, Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog. Mater. Sci 58, 565 (2013)

    Article  CAS  Google Scholar 

  39. V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane wave study. Int. J. Quant. Chem 77, 895 (2000)

    Article  CAS  Google Scholar 

  40. M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hansip, S.J. Clark, M.C. Payne, First principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002)

    Article  CAS  Google Scholar 

  41. B. Mouhib, S. Dahbi, A. Douayar, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba, and Sr) materials for eco-friendly solar cells. Micro Nanostruct. 163, 107124 (2022)

    Article  Google Scholar 

  42. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Calcium hafnate perovskite from an insulator to a semiconductor for photovoltaic and photocatalytic hydrogen production from water splitting applications. Superlattices Microstruct. 160, 107058 (2021)

    Article  CAS  Google Scholar 

  43. B. Akenoun, S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, A. Benyoussef, The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of BaSnO3 perovskite. J Korean Ceramic Soc (2022). https://doi.org/10.1007/s43207-022-00212-1

    Article  Google Scholar 

  44. M. Rashid, R.B. Behram, F. Aziz, A. Mahmood, N.A. Kattan, S.M. Ramay, Optoelectronic pressure dependent study of alkaline earth-based zirconates AZrO3 (A= Ca, Ba, Sr) using ab-initio calculations. Eur. Phys. J. B 93, 1–9 (2020)

    Article  Google Scholar 

  45. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenir, Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci. 39, 1–24 (2005)

    Article  Google Scholar 

  46. F.D. Murnaghan, the compressibility of media under extreme pressure. Proc. Natl. Acad. Sci. USA 30, 244–247 (1994)

    Article  Google Scholar 

  47. R.W.G. Wyckoff, Crystal structures. Acta Crystallogr 18, 139–139 (1965)

    Google Scholar 

  48. D.M. Hoat, J.R. Silva, A.M. Blas, First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase. Solid State Commun. 275, 29–34 (2018)

    Article  CAS  Google Scholar 

  49. R. Nechache et al., Bandgap tuning of multiferroic oxide solar cells. Nat. Photon 9, 61–67 (2014)

    Article  Google Scholar 

  50. S. Azam, S. Nazir, Formation energetics and magnetism in Ca/TM doped CaZrO3: DFT investigation. Phys. B 546, 54–58 (2018)

    Article  CAS  Google Scholar 

  51. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Electronic, optical, and thermoelectric properties of perovskites BaTiO3 compound under the effect of compressive strain. Chem. Phys. 544, 111105 (2021)

    Article  CAS  Google Scholar 

  52. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Importance of spin-orbit coupling on photovoltaic properties of Pb-free vacancy ordered double perovskites halides X2TeY6 (X = Cs, Rb, and Y = I, Br, Cl): first-principles calculations. Int. J. Energy Res. 46, 8433–8442 (2022)

    Article  CAS  Google Scholar 

  53. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Chalcogens’ impurities and a single F-center in SHO: Ab initio calculations. Mater. Sci. Semicond. Process. 138, 106271 (2022)

    Article  CAS  Google Scholar 

  54. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, G. Ceder, Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 85, 155208 (2012)

    Article  Google Scholar 

  55. S. Dahbi, N. Tahiri, O. El Bounaguiand, H. Ez-Zahraouy, Earth Abundant Nontoxic ternary calcium nitrides inverse perovskites for single-junction solar cells; ab-initio simulations. Mater. Sci. Semiconductor Process. 150, 106959 (2022)

    Article  CAS  Google Scholar 

  56. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, A. Benyoussef, Effects of oxygen group elements on thermodynamic stability, electronic structures and optical properties of the pure and pressed BaTiO3 perovskite. Comput. Condens. Matter 32, e00728 (2022)

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: AEB, SD, and NT. Acquisition of data: AEB. Analysis and/or interpretation of data: AEB, SD, NT, OEB, and HE-Z. Drafting the manuscript: AEB, SD, and NT. Revising the manuscript critically for important intellectual content: AEB, SD, NT, OEB, and HE-Z. Approval of the version of the manuscript to be published (the names of all authors must be listed): AEB, SD, NT, OEB, and HE-Z.

Corresponding author

Correspondence to N. Tahiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Badraoui, A., Dahbi, S., Tahiri, N. et al. A DFT study of electronic structure and optical properties of the pure, doped and co-doped CaZrO3 perovskite for photovoltaic applications. J. Korean Ceram. Soc. 60, 712–718 (2023). https://doi.org/10.1007/s43207-023-00297-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00297-2

Keywords

Navigation