Skip to main content

Advertisement

Log in

Photosensitive Al2O3 slurry with high solid content and low viscosity

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Slurries with high solid content and low viscosity are highly necessary to lower the sintering shrinkage and avoid possible defects for ceramic components fabricated by vat photopolymerization technique. However, the viscosity of slurry dramatically arises with the increase of solid content, which severely affects the printing process and the quality of preformance. To solve this issue, a novel combined strategy of powder surface modification and selection of dispersant was proposed to significantly increase the solid load without too much increase in viscosity. The surface of Al2O3 particles was modified by Silane A174 to improve its wettability with resins, and then the use of KOS 110 formed steric hindrance between particles achieving good dispersion. The synergistic effect of the modifier and dispersant was realized. Al2O3 slurry with a high solid loading up to 65 vol% and low viscosity of 20.0 Pa·s at 30 s−1 was prepared for stereolithography-based DLP 3D printing, which had among the highest performance in photosensitive Al2O3 slurries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, S. Wu, Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram. Int. 43, 968–972 (2017). https://doi.org/10.1016/j.ceramint.2016.10.027

    Article  CAS  Google Scholar 

  2. J. Ebert, E. Oezkol, A. Zeichner, K. Uibel, O. Weiss, U. Koops, R. Telle, H. Fischer, Direct inkjet printing of dental prostheses made of Zirconia. J. Dent. Res. 88, 673–676 (2009). https://doi.org/10.1177/0022034509339988

    Article  CAS  Google Scholar 

  3. K. Prabhakaran, C. Pavithran, Gelcasting of alumina from acidic aqueous medium using acrylic acid. J. Eur. Ceram. Soc. 20, 1115–1119 (2000). https://doi.org/10.1016/s0955-2219(99)00244-7

    Article  CAS  Google Scholar 

  4. M.M. Seabaugh, G.L. Messing, M.D. Vaudin, Texture development and microstructure evolution in liquid-phase-sintered alpha-alumina ceramics prepared by templated grain growth. J. Am. Ceram. Soc. 83, 3109–3116 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01690.x

    Article  CAS  Google Scholar 

  5. M. Hegde, V. Meenakshisundaram, N. Chartrain, S. Sekhar, D. Tafti, C.B. Williams, T.E. Long, 3D printing all-aromatic polyimides using mask-projection stereolithography: processing the nonprocessable. Adv. Mater. (2017). https://doi.org/10.1002/adma.201701240

    Article  Google Scholar 

  6. D.K. Patel, A.H. Sakhaei, M. Layani, B. Zhang, Q. Ge, S. Magdassi, Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. (2017). https://doi.org/10.1002/adma.201606000

    Article  Google Scholar 

  7. T. Yao, Z. Deng, K. Zhang, S. Li, A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Compos. Part B Eng. 163, 393–402 (2019). https://doi.org/10.1016/j.compositesb.2019.01.025

    Article  CAS  Google Scholar 

  8. X.-W. Ren, L. Zeng, Z.-M. Wei, X.-Z. Xin, B. Wei, Effects of multiple firings on metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J. Prosthet. Dent. 115, 109–114 (2016). https://doi.org/10.1016/j.prosdent.2015.03.023

    Article  CAS  Google Scholar 

  9. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review. J. Eur. Ceram. Soc. 39, 661–687 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  CAS  Google Scholar 

  10. J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J. Mater. Process. Technol. 209, 5494–5503 (2009). https://doi.org/10.1016/j.jmatprotec.2009.05.004

    Article  CAS  Google Scholar 

  11. Y. Pan, Y. Chen, Z. Yu, Fast mask image projection-based micro-stereolithography process for complex geometry. J. Micro Nano Manuf. (2017). https://doi.org/10.1115/1.4035388

    Article  Google Scholar 

  12. J.C. Liu, J.H. Jean, C.C. Li, Dispersion of nano-sized 7-alumnina powder in non-polar solvents. J. Am. Ceram. Soc. 89, 882–887 (2006). https://doi.org/10.1111/j.1551-2916.2005.00858.x

    Article  CAS  Google Scholar 

  13. C.V. Adake, P. Bhargava, P. Gandhi, Effect of surfactant on dispersion of alumina in photopolymerizable monomers and their UV curing behavior for microstereolithography. Ceram. Int. 41, 5301–5308 (2015). https://doi.org/10.1016/j.ceramint.2014.12.066

    Article  CAS  Google Scholar 

  14. K. Li, Z. Zhao, The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. Ceram. Int. 43, 4761–4767 (2017). https://doi.org/10.1016/j.ceramint.2016.11.143

    Article  CAS  Google Scholar 

  15. A. Goswami, K. Ankit, N. Balashanmugam, A.M. Umarji, G. Madras, Optimization of rheological properties of photopolymerizable alumina suspensions for ceramic microstereolithography. Ceram. Int. 40, 3655–3665 (2014). https://doi.org/10.1016/j.ceramint.2013.09.059

    Article  CAS  Google Scholar 

  16. X. Xu, S. Zhou, J. Wu, Q. Zhang, Y. Zhang, G. Zhu, Preparation of highly dispersive solid microspherical alpha-Al2O3 powder with a hydrophobic surface for stereolithography-based 3D printing technology. Ceram. Int. 46, 1895–1906 (2020). https://doi.org/10.1016/j.ceramint.2019.09.167

    Article  CAS  Google Scholar 

  17. H. Xing, B. Zou, Q. Lai, C. Huang, Q. Chen, X. Fu, Z. Shi, Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technol. 338, 153–161 (2018). https://doi.org/10.1016/j.powtec.2018.07.023

    Article  CAS  Google Scholar 

  18. J. Sun, J. Binner, J. Bai, Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. J. Eur. Ceram. Soc. 39, 1660–1667 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.10.024

    Article  CAS  Google Scholar 

  19. K. Zhang, R. He, C. Xie, G. Wang, G. Ding, M. Wang, W. Song, D. Fang, Photosensitive ZrO2 suspensions for stereolithography. Ceram. Int. 45, 12189–12195 (2019). https://doi.org/10.1016/j.ceramint.2019.03.123

    Article  CAS  Google Scholar 

  20. K. Zhang, Q. Meng, N. Cai, Z. Qu, R. He, Effects of solid loading on stereolithographic additive manufactured ZrO2 ceramic: a quantitative defect study by X-ray computed tomography. Ceram. Int. 47, 24353–24359 (2021). https://doi.org/10.1016/j.ceramint.2021.05.149

    Article  CAS  Google Scholar 

  21. K. Zhang, C. Xie, G. Wang, R. He, G. Ding, M. Wang, D. Dai, D. Fang, High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram. Int. 45, 203–208 (2019). https://doi.org/10.1016/j.ceramint.2018.09.152

    Article  CAS  Google Scholar 

  22. M. Borlaf, N. Szubra, A. Serra-Capdevila, W.W. Kubiak, T. Graule, Fabrication of ZrO2 and ATZ materials via UV-LCM-DLP additive manufacturing technology. J. Eur. Ceram. Soc. 40, 1574–1581 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.037

    Article  CAS  Google Scholar 

  23. Y. Wang, Z. Wang, S. Liu, Z. Qu, Z. Han, F. Liu, L. Li, Additive manufacturing of silica ceramics from aqueous acrylamide based suspension. Ceram. Int. 45, 21328–21332 (2019). https://doi.org/10.1016/j.ceramint.2019.07.118

    Article  CAS  Google Scholar 

  24. D.A. Komissarenko, P.S. Sokolov, A.D. Evstigneeva, I.A. Shmeleva, A.E. Dosovitsky, Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials (2018). https://doi.org/10.3390/ma11122350

    Article  Google Scholar 

  25. E. Johansson, O. Lidstrom, J. Johansson, O. Lyckfeldt, E. Adolfsson, Influence of resin composition on the defect formation in alumina manufactured by stereolithography. Materials (2017). https://doi.org/10.3390/ma10020138

    Article  Google Scholar 

  26. I.M. Krieger, T.J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152 (1959). https://doi.org/10.1122/1.548848

    Article  CAS  Google Scholar 

  27. L. Struble, G.K. Sun, Viscosity of portland-cement paste as a function of concentration. Adv. Cem. Based Mater. 2, 62–69 (1995). https://doi.org/10.1016/1065-7355(94)00023-7

    Article  CAS  Google Scholar 

  28. I.M. Krieger, Rheology of monodisperse latices. Adv. Colloid Interface Sci 3, 111–136 (1972). https://doi.org/10.1016/0001-8686(72)80001-0

    Article  CAS  Google Scholar 

  29. R.C. Ball, P. Richmond, Dynamics of colloidal dispersions. Phys. Chem. Liq. 9, 99–116 (1980). https://doi.org/10.1080/00319108008084770

    Article  CAS  Google Scholar 

  30. A. Ghanbari, B.L. Karihaloo, Prediction of the plastic viscosity of self-compacting steel fibre reinforced concrete. Cem. Concr. Res. 39, 1209–1216 (2009). https://doi.org/10.1016/j.cemconres.2009.08.018

    Article  CAS  Google Scholar 

  31. M.L. Griffith, J.W. Halloran, Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79, 2601–2608 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb09022.x

    Article  CAS  Google Scholar 

  32. Y. Yu, B. Zou, X. Wang, C. Huang, Rheological behavior and curing deformation of paste containing 85 wt% Al2O3 ceramic during SLA-3D printing. Ceram. Int. 48, 24560–24570 (2022). https://doi.org/10.1016/j.ceramint.2022.05.099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong University-MSEA International Institute for Materials Genome Joint Innovation Center for Advanced Ceramics and the Key R & D projects in Shanxi Province (no. 2018ZDCXL-GY-09-06 and 2021ZDLGY14-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifang Han.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, J., Tian, Y. et al. Photosensitive Al2O3 slurry with high solid content and low viscosity. J. Korean Ceram. Soc. 60, 581–590 (2023). https://doi.org/10.1007/s43207-023-00286-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00286-5

Keywords

Navigation