Skip to main content
Log in

Tailored highly efficient Co-doped TiO2/CoTiO3 heterojunction photocatalyst for methylene blue degradation under visible light

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A typical Co-doped TiO2/CoTiO3 heterostructure photocatalyst was synthesized using a facile and cost-effective modified sol–gel route. The as-prepared photocatalysts were further annealed at 400, 600, and 700 °C temperatures and termed CT400, CT600, and CT700, respectively. The XRD analysis of the CT600 photocatalyst reveals the presence of anatase–rutile homojunction and the high crystallinity nature of TiO2. The spectral response and the bandgap of the photocatalysts were analyzed using UV-DRS. The decrease in bandgap due to Co ion doping as well as the synergistic effect of both homojunction and heterojunction in Co-TiO2/CoTiO3 significantly enhanced the photocatalytic activity under visible light. The presence of oxygen vacancies, charge carrier migration, and the chemical compositions of the photocatalysts were studied using ESR, PL, and XPS techniques. Under the visible light, Co-TiO2/CoTiO3 (CT600) photocatalyst exhibited 97% degradation of methylene blue in 90 min, which is ~ 42-fold higher than that of pristine TiO2. No sacrificial reagents were applied in this research. Notably, this visible light active Co-TiO2/CoTiO3 photocatalyst has the potential for the application of large-scale solar-induced dye removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.I. Din, R. Khalid, J. Najeeb, Z. Hussain, J. Clean. Prod. 298, 126567 (2021)

    Article  CAS  Google Scholar 

  2. A.H. Alibak, M. Khodarahmi, P. Fayyazsanavi, S.M. Alizadeh, A.J. Hadi, E. Aminzadehsarikhanbeglou, J. Clean. Prod. 337, 130509 (2022)

    Article  CAS  Google Scholar 

  3. S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)

    Article  CAS  Google Scholar 

  4. H. Park, S. Kim, T. Kim, Y. Kim, S.W. Joo, M. Kang, J. Clean. Prod. 319, 128819 (2021)

    Article  CAS  Google Scholar 

  5. A. Ali, W.C. Oh, J. Korean Ceram. Soc. 54, 388–394 (2017)

    Article  CAS  Google Scholar 

  6. T. Aarthi, G. Madras, Ind. Eng. Chem. Res. 46, 7–14 (2007)

    Article  CAS  Google Scholar 

  7. Q. Chen, H. Shi, W. Shi, Y. Xu, D. Wu, Catal. Sci. Technol. 2, 1213–1220 (2012)

    CAS  Google Scholar 

  8. A. Zaleska, Recent Pat. Eng. 2, 157–164 (2008)

    Article  CAS  Google Scholar 

  9. K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, Sol. Energy Mater. Sol. Cells 80, 47–71 (2003)

    Article  CAS  Google Scholar 

  10. A. Kumar, P. Choudhary, A. Kumar, P.H. Camargo, V. Krishnan, Small 18, 210638 (2022)

    Google Scholar 

  11. S. Lettieri, M. Pavone, A. Fioravanti, A.L.S. Amato, P. Maddalena, Materials 14, 1645 (2021)

    Article  CAS  Google Scholar 

  12. H.I. Kim, J. Kim, W. Kim, W. Choi, J. Phys. Chem. C 115, 9797–9805 (2011)

    Article  CAS  Google Scholar 

  13. C.H. Nguyen, C.C. Fu, R.S. Juang, J. Clean. Prod. 202, 413–427 (2018)

    Article  CAS  Google Scholar 

  14. W.C. Oh, J.S. Bae, J. Korean Ceram. Soc. 45, 667–674 (2008)

    Article  CAS  Google Scholar 

  15. H. Song, G. Zhou, C. Wang, X. Jiang, C. Wu, T. Li, Res. Chem. Intermed. 39, 747–758 (2013)

    Article  CAS  Google Scholar 

  16. C. Liu, F. Wang, S. Zhu, Y. Xu, Q. Liang, Z. Chen, J. Colloid Interface Sci. 530, 403–411 (2018)

    Article  CAS  Google Scholar 

  17. E.A. Mragui, O. Zegaoui, J.C.E. da Silva, Chemosphere 266, 128931 (2021)

    Article  Google Scholar 

  18. R. Zhou, S. Yang, E. Tao, L. Liu, J. Qian, J. Clean. Prod. 337, 130511 (2022)

    Article  CAS  Google Scholar 

  19. N. Hellen, H. Park, K.N. Kim, J. Korean Ceram. Soc. 55, 140–144 (2018)

    Article  Google Scholar 

  20. X.X. Zhang, Y.G. Xiao, S.S. Cao, Z.L. Yin, Z.Q. Liu, J. Clean. Prod. 352, 131560 (2022)

    Article  CAS  Google Scholar 

  21. T. Han, Y. Chen, G. Tian, J.Q. Wang, Z. Ren, W. Zhou, H. Fu, Nanoscale 7, 15924–15934 (2015)

    Article  CAS  Google Scholar 

  22. L. Liu, P. Li, B. Adisak, S. Ouyang, N. Umezawa, J. Ye, R. Kodiyath, T. Tanabe, G.V. Ramesh, S. Ueda, H. Abe, J. Mater. Chem. A 2, 9875–9882 (2014)

    Article  CAS  Google Scholar 

  23. G. Liu, L. Ma, L.C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan, H.M. Cheng, Joule 2, 1095–1107 (2018)

    Article  CAS  Google Scholar 

  24. M. Enhessari, A. Parviz, K. Ozaee, E. Karamali, J. Exp. Nanosci. 5, 61–68 (2010)

    Article  CAS  Google Scholar 

  25. M.C. Sekhar, B.P. Reddy, B.P. Prakash, S. Park, J. Supercond. Nov. Magn. 33, 407–415 (2020)

    Article  CAS  Google Scholar 

  26. D. Cui, Y. Li, Y. Chen, Y. Li, Z. Hai, H. Xu, C. Xue, Micro. Nano Lett. 14, 840–844 (2019)

    CAS  Google Scholar 

  27. Y. Qu, W. Zhou, H. Fu, ChemCatChem 6, 265–270 (2014)

    Article  CAS  Google Scholar 

  28. D. Konwar, P. Basumatary, S.P. Woo, Y. Lee, Y.S. Yoon, Electrochim. Acta 290, 142–149 (2018)

    Article  CAS  Google Scholar 

  29. B. Lin, S. Li, Y. Peng, Z. Chen, X. Wang, J. Hazard. Mater. 406, 124675 (2021)

    Article  CAS  Google Scholar 

  30. A. Noypha, Y. Areerob, S. Chanthai, P. Nuengmatcha, J. Korean Cream. Soc. 58, 297–306 (2021)

    Article  CAS  Google Scholar 

  31. G. Palanisamy, K. Bhuvaneswari, G. Bharathi, T. Pazhanivel, A.N. Grace, S.K.K. Pasha, Chemosphere 273, 129687 (2021)

    Article  CAS  Google Scholar 

  32. R. Praharaj, S. Mishra, T.R. Rautray, J. Korean Ceram. Soc. 57, 271–280 (2020)

    Article  CAS  Google Scholar 

  33. B. Choudhury, A. Choudhury, Int. Nano Lett. 3, 1–9 (2013)

    Article  CAS  Google Scholar 

  34. R.S. Dubey, Mater. Lett. 215, 312–317 (2018)

    Article  CAS  Google Scholar 

  35. B. Anitha, M.A. Khadar, A. Banerjee, J. Solid State Chem. 239, 237–245 (2016)

    Article  CAS  Google Scholar 

  36. R. Ye, H. Fang, Y.Z. Zheng, N. Li, Y. Wang, X. Tao, A.C.S. Appl, Mater. Interfaces 8, 13879–13889 (2016)

    Article  CAS  Google Scholar 

  37. L. Samet, J.B. Nasseur, R. Chtourou, K. March, O. Stephan, Mater. Charact. 85, 1–12 (2013)

    Article  CAS  Google Scholar 

  38. A.A. Valeeva, E.A. Kozlova, A.S. Vokhmintsev, R.V. Kamalov, I.B. Dorosheva, A.A. Saraev, I.A. Weinstein, A.A. Rempel, Sci. Rep. 8, 1–10 (2018)

    Article  CAS  Google Scholar 

  39. M. Borah, D. Mohanta, J. Appl. Phys. 112, 124321 (2012)

    Article  Google Scholar 

  40. J. T-Thienprasert, S. Klaithong, A. Niltharach, A. Worayingyong, S. Na-Phattalung, S. Limpijumnong, Appl. Phys. 11, S279–S284 (2011)

    Google Scholar 

  41. K. Wangkawong, S. Suntalelat, D. Tantraviwat, B. Inceesungvorn, Mater. Lett. 133, 119–122 (2014)

    Article  CAS  Google Scholar 

  42. G. Yang, D. Gao, J. Zhang, J. Zhang, Z. Shi, D. Xue, J. Phys. Chem. C 115, 16814–16818 (2011)

    Article  CAS  Google Scholar 

  43. G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, J. Mater. Chem. 20, 5301–5309 (2010)

    Article  CAS  Google Scholar 

  44. L.T. Tseng, X. Luo, T.T. Tan, S. Li, J. Yi, Nanoscale Res. Lett. 9, 1–10 (2014)

    Article  CAS  Google Scholar 

  45. L. Chetibi, T. Busko, N.P. Kulish, D. Hamana, S. Chaieb, S. Achour, J. Nanoparticle Res. 19, 1–9 (2017)

    Article  CAS  Google Scholar 

  46. S. Mathew, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, J. Fluoresc. 22, 1563–1569 (2012)

    Article  CAS  Google Scholar 

  47. M. Sreemany, T.B. Ghosh, B.C. Pai, M. Chakraborty, Mater. Res. Bull. 33, 189–198 (1998)

    Article  CAS  Google Scholar 

  48. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Adv. Funct. Mater. 23, 5444–5450 (2013)

    Article  CAS  Google Scholar 

  49. K. Wang, T. Peng, Z. Wang, H. Wang, X. Chen, W. Dai, X. Fu, Appl. Catal. B: Environ. 250, 89–98 (2019)

    Article  CAS  Google Scholar 

  50. Y. Matsumoto, M. Katayama, T. Abe, T. Ohsawa, I. Ohkubo, H. Kumigashira, M. Oshima, H. Koinuma, J. Ceram. Soc. Japan 118(1383), 993–996 (2010)

    Article  CAS  Google Scholar 

  51. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 6, 1–12 (2016)

    Article  CAS  Google Scholar 

  52. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, J. Appl. Phys. 75, 2945–2951 (1994)

    Article  CAS  Google Scholar 

  53. G. Yang, W. Yan, J. Wang, H. Yang, Mater. Lett. 122, 117–120 (2014)

    Article  CAS  Google Scholar 

  54. Y. Yang, P. Gao, X. Ren, L. Sha, P. Yang, J. Zhang, Y. Chen, L. Yang, Appl. Cat. B: Environ. 218, 751–757 (2017)

    Article  CAS  Google Scholar 

  55. J.Y. Tai, K.H. Leong, P. Saravanan, A.A. Aziz, L.C. Sim, J. Mater. Sci. 52, 11630–11642 (2017)

    Article  CAS  Google Scholar 

  56. X. Gao, X. Liu, Z. Zhu, X. Wang, Z. Xie, Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

  57. D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805–811 (2009)

    Article  CAS  Google Scholar 

  58. R.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R.J. Tilley, J. Solid State Chem. 92, 178–190 (1991)

    Article  CAS  Google Scholar 

  59. S. Qin, Y. Lei, J. Guo, J.F. Huang, C.P. Hou, J.M. Liu, A.C.S. Appl, Mater. Interfaces 13, 25960–25971 (2021)

    Article  CAS  Google Scholar 

  60. Y.S. Yoon, P. Basumatary, M.E. Kilic, Y.L. Cha, K.R. Lee, D.J. Kim, D. Konwar, Adv. Funct. Mater. 32, 2111272 (2022)

    Article  CAS  Google Scholar 

  61. D. Konwar, P. Basumatary, U.H. Lee, Y.S. Yoon, J. Mater. Chem. A 9, 10685–10694 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the project fund sanctioned by Science and Engineering Research Board-DST, India (Sanction order: EEQ/2019/000461) to carry out this work. The authors would also like to thank SAIC, Tezpur University; CIF, IIT Guwahati; SAIF, and IASST Guwahati; for their assistance in the characterization of the photocatalysts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimpul Konwar or Anjalu Ramchiary.

Ethics declarations

Conflict of interest

The authors confirmed that there are no relevant financial or non-financial interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1532 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basumatary, R., Basumatary, B., Konwar, D. et al. Tailored highly efficient Co-doped TiO2/CoTiO3 heterojunction photocatalyst for methylene blue degradation under visible light. J. Korean Ceram. Soc. 60, 547–559 (2023). https://doi.org/10.1007/s43207-022-00284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00284-z

Keywords

Navigation