Skip to main content

Advertisement

Log in

Phase stability of double perovskite in Pr[Ba1 − xSrx][Co1 − yFey]2O5.5 using genetic algorithm and density functional theory

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A double perovskite (AʹAʺB2O6) is a phase where site A (Aʹ and Aʺ) elements are ordered to form alternating AʹO and AʺO layers. The energetically stable structures of double and complex perovskite phases were investigated using a genetic algorithm and the density functional theory for Pr[Ba1 − xSrx][Co1 − yFey]2O5.5, where x and y = 0, 0.25, 0.5, 0.75, 1. The energy difference between the most energetically stable double and complex perovskites decreased with x because the difference between the ion radii at sites Aʹ and Aʺ decreased. The double perovskites were preferred when x and y are approximately 0 and 0.5, respectively, which is in good agreement with literature. The energy difference is a feasible descriptor for evaluating the phase stability between double and complex perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

Due to confidentiality agreements, supporting data can only be made available to bona fide researchers subject to a non-disclosure agreement. Details of the data and how to request access are available from yckim@koreatech.ac.kr at Korea University of Technology and Education.

References

  1. O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ion. 22(2–3), 241–246 (1987)

    Article  CAS  Google Scholar 

  2. C. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010)

    Article  CAS  Google Scholar 

  3. C. Lim, S. Sengodan, D. Jeong, J. Shin, G. Kim, Investigation of the Fe doping effect on the B-site of the layered perovskite PrBa0.8Ca0.2Co2O5+δ for a promising cathode material of the intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 44(2), 1088–1095 (2019)

    Article  CAS  Google Scholar 

  4. S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202–210 (2018)

    Article  CAS  Google Scholar 

  5. C.B. Lopez, L.R. Monllor, T. Nakamura, S. Ricote, R. O’Hayre, K. Amezawa, M.A. Einarsrud, T. Grande, Effect of cation ordering on the performance and chemical stability of layered double perovskite cathodes. Materials 11(2), 196–211 (2018)

    Article  Google Scholar 

  6. J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu, G. Kim, Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. Chemsuschem 7(10), 2811–2815 (2014)

    Article  CAS  Google Scholar 

  7. G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, C.A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem. 17(24), 2500–2505 (2007)

    Article  CAS  Google Scholar 

  8. A.A. Taskin, A.N. Lavrov, Y. Ando, Fast oxygen diffusion in A-site ordered perovskites. Prog. Solid State Chem. 35(2–4), 481–490 (2007)

    Article  CAS  Google Scholar 

  9. A.A. Taskin, A.N. Lavrov, Y. Ando, Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett. 86(9), 091910 (2005)

    Article  Google Scholar 

  10. L. Er-Rakho, C. Michel, Ph. Lacorre, B. Raveau, YBaCuFeO5+δ: a novel oxygen-deficient perovskite with a layer structure. J. Solid State Chem. 73(2), 531–535 (1988)

    Article  CAS  Google Scholar 

  11. K. Zhang, L. Ge, R. Ran, Z. Shao, S. Liu, Synthesis, Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater. 56(17), 4876–4889 (2008)

    Article  CAS  Google Scholar 

  12. J.H. Kim, M. Cassidy, J.T.S. Irvine, J. Bae, Electrochemical investigation of composite cathodes with SmBa0.5Sr0.5Co2O5+δ cathodes for intermediate temperature-operating solid oxide fuel cell. Chem. Mater. 22(3), 883–892 (2010)

    Article  CAS  Google Scholar 

  13. D. Chen, R. Ran, K. Zhang, J. Wang, Z. Shao, Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J. Power Sources 188(1), 96–105 (2009)

    Article  CAS  Google Scholar 

  14. J.-H. Kim, A. Manthiram, LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 155(4), B385–B390 (2008)

    Article  CAS  Google Scholar 

  15. A. McKinlay, P. Connor, J.T.S. Irvine, W. Zhou, Structural chemistry and conductivity of a solid solution of YBa1−xSrxCo2O5+δ. J. Phys. Chem. C 111(51), 19120–19125 (2007)

    Article  CAS  Google Scholar 

  16. S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H.Y. Jeong, Y.M. Choi, G. Kim, M. Liu, Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci. Rep. 3, 2426–2431 (2013)

    Article  Google Scholar 

  17. Y. Chen, Y.M. Choi, S. Yoo, Y. Ding, R. Yan, K. Pei, C. Qu, L. Zhang, I. Chang, B. Zhao, Y. Zhang, H. Chen, Y. Chen, C. Yang, B. deGlee, R. Murphy, J. Liu, M. Liu, A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction. Joule 2(5), 938–949 (2018)

    Article  CAS  Google Scholar 

  18. S. Yoo, A. Jun, Y.-W. Ju, D. Odkhuu, J. Hyodo, H.Y. Jeong, N. Park, J. Shin, T. Ishihara, G. Kim, Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Angew. Chem. 126(48), 13280–13283 (2014)

    Article  Google Scholar 

  19. J. Kim, D.-H. Kim, J.-S. Kim, Y.-C. Kim, Finding and characterization of an energetically favorable cubic Ce0.75Zr0.25O2 solid solution using genetic algorithm and density functional theory. Comput. Mater. Sci. 138, 219–224 (2017)

    Article  CAS  Google Scholar 

  20. I.G. Choi, Y. Kim, K.Y. Kim, J. Jo, S.J. Song, Y.-C. Kim, Energetically-favorable distribution of oxygen vacancies and metal atoms in perovskite BaCexZr0.85−xY0.15O2.925 solid solutions using a genetic algorithm and lattice statics. Comput. Mater. Sci. 170, 109184–109188 (2019)

    Article  CAS  Google Scholar 

  21. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–20 (1996)

    Article  CAS  Google Scholar 

  22. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11181 (1996)

    Article  CAS  Google Scholar 

  23. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)

    Article  CAS  Google Scholar 

  24. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

    Article  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  CAS  Google Scholar 

  26. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  Google Scholar 

  27. A. Grimaud, K.J. May, C.E. Carlton, Y.-L. Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao-Horn, Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 3439–3445 (2013)

    Article  Google Scholar 

  28. T. Chen, S. Pang, X. Shen, X. Jiang, W. Wang, Evaluation of Ba-deficient PrBa1−xFe2O5+δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells. RSC. Adv. 6(17), 13829–13836 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Institutional Research Program (2E31852) of the Korea Institute of Science and Technology (KIST), by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004), and by the Education and Research Promotion Program of KOREATECH in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong-Cheol Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, JY., Kim, HK., Kim, J. et al. Phase stability of double perovskite in Pr[Ba1 − xSrx][Co1 − yFey]2O5.5 using genetic algorithm and density functional theory. J. Korean Ceram. Soc. 60, 434–439 (2023). https://doi.org/10.1007/s43207-022-00278-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00278-x

Keywords

Navigation