Skip to main content
Log in

Effect of molten glass on degradation of stabilized zirconia thermal barrier coatings

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, Ceria Yttria Stabilized Zirconia based alternative Thermal Barrier Coatings those are resistant to molten glass (Ca–Mg–Al–Silicate) have been manufactured. These alternative coatings have been subjected to molten glass and their thermal cycle lifetimes before and after the Ca–Mg–Al–Silicate interaction have been tested. Infiltration of molten glass through the coating is investigated using energy dispersive spectrometry elemental mapping method. Although the life span of coatings without alumina and titania additives has dropped to the quarter of their life span after molten glass contact, the life span of alumina and titania doped Ceria Yttria Stabilized Zirconia coating has decreased lightly. According to the characterization studies, it was observed that the porosity of the Ceria Yttria Stabilized Zirconia coating with Alumina and Titania additives decreased, and the decrease in the porosity caused the molten glass solution to penetrate the coating less. Monoclinic ⇆ tetragonal phase transformations occur during the thermal cycle and plasma spray process. Cracks occur in coatings due to volume changes caused by these phase transformations. These cracks in the coating enable molten glass to penetrate the coating more easily, however, cerium additive reduces the monoclinic ⇆ tetragonal phase transformation. For these reasons, the addition of cerium, alumina and titania makes the coating more resistant to molten glass and thus the thermal cycle life of the coating is improved. In addition, these additives have improved the adhesion strength of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Vaßen et al., Entwicklung von Oxid-Keramik zur Anwendung als Wärmedämmschichten. Mater. Werkst. Mater. Sci. Eng. Technol. 32(8), 673–677 (2001)

    Article  Google Scholar 

  2. G.-H. Meng et al., Highly oxidation resistant and cost effective MCrAlY bond coats prepared by controlled atmosphere heat treatment. Surf. Coat. Technol. 347, 54–65 (2018)

    Article  CAS  Google Scholar 

  3. X. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1–10 (2004)

    Article  CAS  Google Scholar 

  4. D. Stöver et al., New material concepts for the next generation of plasma-sprayed thermal barrier coatings. J. Therm. Spray Technol. 13(1), 76–83 (2004)

    Article  Google Scholar 

  5. R. Vaßen, F. Traeger, D. Stöver, New thermal barrier coatings based on pyrochlore/YSZ double-layer systems. Int. J. Appl. Ceram. Technol. 1(4), 351–361 (2004)

    Article  Google Scholar 

  6. M. Karabaş, E. Bal, Y. Taptık, Thermal cycling behavior of La2Zr2O7 thermal barrier coatings by plasma spraying of an amorphous and crystalline precursors. Mater. Res. Express 6(1), 015514 (2018)

    Article  Google Scholar 

  7. R. Vaßen et al., Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205(4), 938–942 (2010)

    Article  Google Scholar 

  8. N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science 296(5566), 280–284 (2002)

    Article  CAS  Google Scholar 

  9. G. Di Girolamo et al., Structure and thermal properties of heat treated plasma sprayed ceria–yttria co-stabilized zirconia coatings. Ceram. Int. 36(3), 961–968 (2010)

    Article  Google Scholar 

  10. M. Gök, G. Goller, Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS+hot corrosion test. J. Eur. Ceram. Soc. 37, 2501–2508 (2017)

    Article  Google Scholar 

  11. G. Mehboob et al., A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceram. Int. 46(7), 8497–8521 (2020)

    Article  CAS  Google Scholar 

  12. Z. Yan et al., Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings. Corros. Sci. 157, 450–461 (2019)

    Article  CAS  Google Scholar 

  13. X.-F. Zhang et al., Preparation of Al2O3 nanowires on 7YSZ thermal barrier coatings against CMAS corrosion. Trans. Nonferrous Metals Soc. China 29(11), 2362–2370 (2019)

    Article  CAS  Google Scholar 

  14. A. Aygun et al., Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 55(20), 6734–6745 (2007)

    Article  CAS  Google Scholar 

  15. K. Yuan et al., Al2O3–TiO2 codoped yttria-stabilized zirconia thermal barrier coatings resistant to damage by molten calcium-magnesium-alumino-silicate (CMAS). Glass 23(6), 2001338 (2021)

    CAS  Google Scholar 

  16. E. Bal, M. Karabaş, İY. Taptık, The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings. Mater. Res. Express 5(6), 065201 (2018)

    Article  Google Scholar 

  17. J.M. Drexler et al., Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surf. Coat. Technol. 204(16–17), 2683–2688 (2010)

    Article  CAS  Google Scholar 

  18. T. Wang et al., Corrosion behavior of air plasma spraying zirconia-based thermal barrier coatings subject to Calcium–Magnesium–Aluminum-Silicate (CMAS) via burner rig test. Ceram. Int. 46(11), 18698–18706 (2020)

    Article  CAS  Google Scholar 

  19. B.S. Senturk et al., CMAS-resistant plasma sprayed thermal barrier coatings based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ solute additions. J. Therm. Spray Technol. 23(4), 708–715 (2014)

    Article  CAS  Google Scholar 

  20. M. Karabaş, Production and characterization of Nd and Dy doped lanthanum zirconate-based thermal barrier coatings. Surf. Coat. Technol. 394, 125864 (2020)

    Article  Google Scholar 

  21. J.L. Smialek, F.A. Archer, R.G. Garlick, Turbine airfoil degradation in the Persian-Gulf-War. Jom-J. Miner. Metals Mater. Soc. 46(12), 39–41 (1994)

    Article  CAS  Google Scholar 

  22. M.P. Borom, C.A. Johnson, L.A. Peluso, Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 86(1–3), 116–126 (1996)

    Article  Google Scholar 

  23. P. Mechnich, W. Braue, U. Schulz, High-temperature corrosion of EB-PVD yttria partially stabilized zirconia thermal barrier coatings with an artificial volcanic ash overlay. J. Am. Ceram. Soc. 94(3), 925–931 (2011)

    Article  CAS  Google Scholar 

  24. Z. Yan et al., Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings. Corros. Sci. 167, 108532 (2020)

    Article  CAS  Google Scholar 

  25. C. Cai et al., Microstructure characteristics of EB-PVD YSZ thermal barrier coatings corroded by molten volcanic ash. Surf. Coat. Technol. 286, 49–56 (2016)

    Article  CAS  Google Scholar 

  26. V.V. Sobolev et al., Development of substrate-coating adhesion in thermal spraying. Int. Mater. Rev. 42(3), 117–136 (1997)

    Article  CAS  Google Scholar 

  27. C.R.C. Lima, J.M. Guilemany, Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf. Coat. Technol. 201(8), 4694–4701 (2007)

    Article  CAS  Google Scholar 

  28. M.H. Vidal-Setif et al., Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS. Surf. Coat. Technol. 239, 41–48 (2014)

    Article  CAS  Google Scholar 

  29. F. Kirbiyik, M.G. Gok, G. Goller, Microstructural, mechanical and thermal properties of Al2O3/CYSZ functionally graded thermal barrier coatings. Surf. Coat. Technol. 329, 193–201 (2017)

    Article  CAS  Google Scholar 

  30. V. Kumar, K. Balasubramanian, Progress update on failure mechanisms of advanced thermal barrier coatings: a review. Prog. Org. Coat. 90, 54–82 (2016)

    Article  CAS  Google Scholar 

  31. A.A. Kulkarni et al., Advanced microstructural characterization of plasma-sprayed zirconia coatings over extended length scales. J. Therm. Spray Technol. 14(2), 239–250 (2005)

    Article  CAS  Google Scholar 

  32. H.J. Jang et al., Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surf. Coat. Technol. 200(14–15), 4355–4362 (2006)

    Article  CAS  Google Scholar 

  33. C. Duhamel et al., Thermal cycling behaviour of thermal barrier coating systems based on first- and fourth-generation Ni-based superalloys. Mater. High Temp. 29(2), 136–144 (2012)

    Article  CAS  Google Scholar 

  34. C. Che et al., Effect of bond coat surface roughness on oxidation behaviour of air plasma sprayed thermal barrier coatings. Surf. Eng. 24(4), 276–279 (2008)

    Article  CAS  Google Scholar 

  35. A.C. Karaoglanli et al., Comparison of oxidation and thermal shock performance of thermal barrier coatings. Mater. Manuf. Process. 30(6), 717–723 (2015)

    Article  CAS  Google Scholar 

  36. L. Li, N. Hitchman, J. Knapp, Failure of thermal barrier coatings subjected to CMAS attack. J. Therm. Spray Technol. 19(1–2), 148–155 (2010)

    Article  CAS  Google Scholar 

  37. Y.Z. Wang et al., Study on thermal resistance performance of 8YSZ thermal barrier coatings. Int. J. Therm. Sci. 122, 12–25 (2017)

    Article  Google Scholar 

  38. R. Sobhanverdi, A. Akbari, Porosity and microstructural features of plasma sprayed Yttria stabilized Zirconia thermal barrier coatings. Ceram. Int. 41(10), 14517–14528 (2015)

    Article  CAS  Google Scholar 

  39. S. Tailor et al., Atmospheric plasma sprayed 7%-YSZ thick thermal barrier coatings with controlled segmentation crack densities and its thermal cycling behavior. Ceram. Int. 44(3), 2691–2699 (2018)

    Article  CAS  Google Scholar 

  40. A.G. Evans, D.R. Clarke, C.G. Levi, The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28(7), 1405–1419 (2008)

    Article  CAS  Google Scholar 

  41. A. Kucuk, R.S. Lima, C.C. Berndt, Influence of plasma spray parameters on formation and morphology of ZrO2-8 wt% Y2O3 deposits. J. Am. Ceram. Soc. 84(4), 693–700 (2001)

    Article  CAS  Google Scholar 

  42. R.A. Miller, J.L.S. Smialek, R.G. Garlick, Phase stability in plasma-sprayed partially stabilized zirconia yttria. Sci. Technol. Zirconia Adv. Ceram. 3, 10 (1981)

    Google Scholar 

  43. J.R. Brandon, R. Taylor, Thermal-properties of ceria and yttria partially stabilized zirconia thermal barrier coatings. Surf. Coat. Technol. 39(1–3), 143–151 (1989)

    Article  Google Scholar 

  44. M.M. Dokur, G. Goller, Processing and characterization of CYSZ/Al2O3 and CYSZ/Al2O3+ YSZ multilayered thermal barrier coatings. Surf. Coat. Technol. 258, 804–813 (2014)

    Article  CAS  Google Scholar 

  45. M. Leoni, R. Jones, P. Scardi, Phase stability of scandia–yttria-stabilized zirconia TBCs. Surf. Coat. Technol. 108, 107–113 (1998)

    Article  Google Scholar 

  46. R. Ahmadi-Pidani et al., Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification. Opt. Lasers Eng. 50(5), 780–786 (2012)

    Article  Google Scholar 

  47. S. Balasubramanian, H. Keshavan, W.R. Cannon, Sinter forging of rapidly quenched eutectic Al2O3-ZrO2(Y2O3)-glass powders. J. Eur. Ceram. Soc. 25(8), 1359–1364 (2005)

    Article  CAS  Google Scholar 

  48. A. Afrasiabi, M. Saremi, A. Kobayashi, A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 478(1–2), 264–269 (2008)

    Article  Google Scholar 

  49. M. Rahnavard et al., Effects of incorporation of micro and nano Al2O3 layers on thermal shock behaviour of YSZ thermal barrier coatings. Can. Metall. Q. 55(3), 312–320 (2016)

    Article  CAS  Google Scholar 

  50. G. Pujol et al., Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications. Surf. Coat. Technol. 237, 71–78 (2013)

    Article  CAS  Google Scholar 

  51. J.M. Drexler et al., Jet engine coatings for resisting volcanic ash damage. Adv. Mater. 23(21), 2419 (2011)

    Article  CAS  Google Scholar 

  52. M.M. Dokur, G. Goller, Processing and characterization of CYSZ/Al2O3 and CYSZ/Al2O3 + YSZ multilayered thermal barrier coatings. Surf. Coat. Technol. 258, 804–813 (2014)

    Article  CAS  Google Scholar 

  53. A. Keyvani, M. Saremi, M.H. Sohi, Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 C. J. Alloy. Compd. 509(33), 8370–8377 (2011)

    Article  CAS  Google Scholar 

  54. M. Karabas et al., Effect of air plasma spray parameters on the properties of YSZ and CYSZ thermal barrier coatings. J. Aust. Ceram. Soc. 52(2), 175–182 (2016)

    CAS  Google Scholar 

  55. S.A. Sadeghi-Fadaki, K. Zangeneh-Madar, Z. Valefi, The adhesion strength and indentation toughness of plasma-sprayed yttria stabilized zirconia coatings. Surf. Coat. Technol. 204(14), 2136–2141 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Bal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, E., Karabaş, M. Effect of molten glass on degradation of stabilized zirconia thermal barrier coatings. J. Korean Ceram. Soc. 60, 331–343 (2023). https://doi.org/10.1007/s43207-022-00268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00268-z

Keywords

Navigation