Skip to main content

Advertisement

Log in

Transparent aluminium ceramics: fabrication techniques, setbacks and prospects

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The quest to replace glass with transparent aluminium ceramics (AlON) in some applications such as automotive, aircraft, armour, electronics, mobile phone screens, etc., is long in coming. More than ever, the dire need for this replacement is calling for urgent attention in the research world. Some years ago, the possibility of fabricating transparent metals sounded more like a mirage, but as time went by, the mirage of yesterday became the reality of today. Cost of fabrication, ease of fabrication and the development of inherent properties during fabrications have limited research interest in transparent AlON ceramics development and their wide usage. Regardless of some of these challenges, the shift of research focuses on the cost-effective ways of fabricating this ceramic metal will definitely revolutionise the engineering world. In an attempt to awaken the research in this area, this review paper presents the fabrication techniques, challenges/setbacks and prospects associated with transparent AlON ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. H. Ji et al., Direct ink writing of aluminium oxynitride (AlON) transparent ceramics from water-based slurries. Ceramics Int. 48(6), 8118–8124 (2022). (2022/03/15/)

    Article  CAS  Google Scholar 

  2. G. Yamaguchi, H. Yanagida, Study on the reductive spinel—a new spinel formula AlN–Al2O3 instead of the previous one Al3O4. Bull. Chem. Soc. Jpn. 32(11), 1264–1265 (1959)

    Article  CAS  Google Scholar 

  3. A.M. Tsabit, D.-H. Yoon, Transparent polycrystalline γ-AlON fabricated using a hybrid sintering process. Scripta Mater. 194, 113715 (2021)

    Article  CAS  Google Scholar 

  4. T. M. Hartnett and R. L. Gentilman, "Optical and mechanical properties of highly transparent spinel and AlON domes," vol. 505, pp. 15–22: SPIE.

  5. L. M. Goldman, R. Twedt, S. Balasubramanian, and S. Sastri, ALON optical ceramic transparencies for window, dome, and transparent armor applications. Int. Soc. Opt. Photon. 8016, 801608 (2011)

  6. T.M. Hartnett, S.D. Bernstein, E.A. Maguire, R.W. Tustison, Optical properties of ALON (aluminum oxynitride). Infrared Phys. Technol. 39(4), 203–211 (1998)

    Article  CAS  Google Scholar 

  7. X.J. Liu et al., Hard transparent AlON ceramic for visible/IR windows. Int. J. Refract. Metals Hard Mater. 39, 38–43 (2013). (2013/07/01/)

    Article  CAS  Google Scholar 

  8. D. Varanasi, M. Furkó, K. Balázsi, C. Balázsi, Processing of Al2O3-AlN ceramics and their structural, mechanical, and tribological characterization. Materials 14(20), 6055 (2021)

    Article  CAS  Google Scholar 

  9. J.W. McCauley et al., AlON: A brief history of its emergence and evolution. J. Eur. Ceram. Soc. 29(2), 223–236 (2009)

    Article  CAS  Google Scholar 

  10. J.W. McCauley, A simple model for aluminum oxynitride spinels. J. Am. Ceram. Soc. 61(7–8), 372–373 (1978)

    Article  CAS  Google Scholar 

  11. D. V. Prosvirnin, A. G. Kolmakov, M. D. Larionov, M. E. Prutskov, and A. V. Levina, "Methods and techniques for producing ceramics from aluminum oxynitride," vol. 525, p. 012067: IOP Publishing.

  12. H.X. Willems, M. Hendrix, G. De With, R. Metselaar, Thermodynamics of Alon II: phase relations. J. Eur. Ceram. Soc. 10(4), 339–346 (1992)

    Article  CAS  Google Scholar 

  13. J.W. McCauley, N.D. Corbin, Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON). J. Am. Ceram. Soc. 62(9–10), 476–479 (1979)

    Article  CAS  Google Scholar 

  14. J. W. McCauley and N. D. Corbin, "High temperature reactions and microstructures in the Al 2 O 3-AlN system," in Progress in Nitrogen Ceramics: Springer, 1983, pp. 111–118.

  15. A. M. Tsabit and D.-H. Yoon, "Review on transparent polycrystalline ceramics," Journal of the Korean Ceramic Society, pp. 1–24, 2021.

  16. N. Li, J. Pan, Z. Liu, L. Liu, Metallic glass nanostructures: Forming strategies and functional applications. Mater. Today Adv. 15, 100253 (2022)

    Article  CAS  Google Scholar 

  17. S. Huang, F. Gao, Q. Li, X. Cheng, AlON phase formation in hot-pressing sintering Al2O3/AlN composites and their oxidation behavior. J. Alloys Compounds 685, 309–315 (2016). (2016/11/15/)

    Article  CAS  Google Scholar 

  18. X.J. Zhao, H.Q. Ru, D.L. Chen, N. Zhang, B. Liang, Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites. Mater. Sci. Eng., B 177(5), 402–410 (2012)

    Article  CAS  Google Scholar 

  19. X. Li, J. Luo, Y. Zhou, Spark plasma sintering behavior of AlON ceramics doped with different concentrations of Y2O3. J. Eur. Ceram. Soc. 35(7), 2027–2032 (2015)

    Article  CAS  Google Scholar 

  20. F.C. Sahin, H.E. Kanbur, B. Apak, Preparation of AlON ceramics via reactive spark plasma sintering. J. Eur. Ceram. Soc. 32(4), 925–929 (2012)

    Article  CAS  Google Scholar 

  21. D. Zientara, M. M. Bućko, and J. Lis, "Investigation of γ-alon structural evolution during sintering and hot-pressing," vol. 409, pp. 313–316: Trans Tech Publ.

  22. J. M. Xue, Q. Liu, T. P. Xiu, L. L. Ma, M. Fang, and L. H. Gui, "Hot-pressed translucent aluminum oxynitride (AlON) ceramics," vol. 368, pp. 450–452: Trans Tech Publ.

  23. R. Johnson, P. Biswas, P. Ramavath, R.S. Kumar, G. Padmanabham, Transparent polycrystalline ceramics: an overview. Trans. Indian Ceram. Soc. 71(2), 73–85 (2012)

    Article  CAS  Google Scholar 

  24. S.F. Wang et al., Transparent ceramics: processing, materials and applications. Prog. Solid State Chem. 41(1–2), 20–54 (2013)

    Article  Google Scholar 

  25. I. G. Crouch, G. V. Franks, C. Tallon, S. Thomas, and M. Naebe, "7 - Glasses and ceramics," in The Science of Armour Materials, I. G. Crouch, Ed.: Woodhead Publishing, 2017, pp. 331–393.

  26. C. A. Bruch, "Transparent magnesia-alumina spinel and method," ed: Google Patents, 1970.

  27. B. W. Thewis and L. J. Gordon, "Method of preparing magnesia spinel," ed: Google Patents, 1967.

  28. J. J. Swab, J. C. Lasalvia, G. A. Gilde, P. J. Patel, and M. J. Motyka, "Transparent armor ceramics: AlON and spinel," vol. 20, pp. 79–84.

  29. G. A. G. Parimal J. Patel, Peter G. Dehmer, James W. McCauley, Transparent Armor. Adv. Mater. Processs. Technol. 4, 1–14 (2000)

  30. M. Ramisetty, S. Sastri, U. Kashalikar, L.M. Goldman, N. Nag, Transparent polycrystalline cubic spinels protect and defend. Am. Ceramics Soc. Bull. 92(2), 20–25 (2013)

    CAS  Google Scholar 

  31. J. Cheng, D. Agrawal, Y. Zhang, R. Roy, Microwave reactive sintering to fully transparent aluminum oxynitride (ALON) ceramics. J. Mater. Sci. Lett. 20(1), 77–79 (2001)

    Article  CAS  Google Scholar 

  32. Y.W. Kim, B.H. Park, H.C. Park, Y.B. Lee, K.D. Oh, F.L. Riley, Sintering, microstructure, and mechanical properties of AlON-AlN particulate composites. Br. Ceram. Trans. 97(3), 97–104 (1998)

    CAS  Google Scholar 

  33. A. Maghsoudipour, M.A. Bahrevar, J.G. Heinrich, F. Moztarzadeh, Reaction sintering of AlN–AlON composites. J. Eur. Ceram. Soc. 25(7), 1067–1072 (2005)

    Article  CAS  Google Scholar 

  34. Y.W. Kim, H.C. Park, Y.B. Lee, K.D. Oh, R. Stevens, Reaction sintering and microstructural development in the system Al2O3–AlN. J. Eur. Ceram. Soc. 21(13), 2383–2391 (2001)

    Article  CAS  Google Scholar 

  35. W. Xidong, W. Fuming, L. Wenchao, Synthesis, microstructures and properties of γ-aluminum oxynitride. Mater. Sci. Eng., A 342(1–2), 245–250 (2003)

    Article  Google Scholar 

  36. W. Kollenberg, E. Rymon-Lipinska, Sintern von aluminium-oxinitrid (AlON). Keram. Z. 44(8), 520–524 (1992)

    CAS  Google Scholar 

  37. T. Sakai, Hot-pressed oxynitrides in the system AlNAl2O3, sintering theory and practice. Mater. Sci. Monogr 44, 591–596 (1981)

    Google Scholar 

  38. L. B. Kong et al., "Transparent ceramic materials," in Transparent Ceramics: Springer, 2015, pp. 29–91.

  39. Q. Liu, N. Jiang, J. Li, K. Sun, Y. Pan, J. Guo, Highly transparent AlON ceramics sintered from powder synthesized by carbothermal reduction nitridation. Ceram. Int. 42(7), 8290–8295 (2016)

    Article  CAS  Google Scholar 

  40. Y. Wang et al., Preparation and properties of AlON powders. Ceram. Int. 44(1), 471–476 (2018)

    Article  CAS  Google Scholar 

  41. Y. Shan, Z. Zhang, X. Sun, J. Xu, Q. Qin, J. Li, Further experimental investigation on fast densification mechanism of bimodal powder during pressureless sintering of transparent AlON ceramics. Ceram. Int. 43(11), 8195–8201 (2017)

    Article  CAS  Google Scholar 

  42. M.R. Loghman-Estarki, Effect of carbon black content and particle size on the phase evolution of aluminum oxy nitride (AlON). Ceram. Int. 42(15), 17680–17686 (2016)

    Article  CAS  Google Scholar 

  43. L. Yawei, L. Nan, Y. Runzhang, The formation and stability of γ-aluminium oxynitride spinel in the carbothermal reduction and reaction sintering processes. J. Mater. Sci. 32(4), 979–982 (1997)

    Article  Google Scholar 

  44. X. Yuan, X. Liu, F. Zhang, S. Wang, Synthesis of γ-AlON powders by a combinational method of carbothermal reduction and solid-state reaction. J. Am. Ceram. Soc. 93(1), 22–24 (2010)

    Article  CAS  Google Scholar 

  45. J. Qi et al., Preparation and light transmission properties of AlON ceramics by the two-step method with nanosized Al2O3 and AlN. Metall. Mater. Trans. A. 42(13), 4075–4079 (2011)

    Article  CAS  Google Scholar 

  46. S. Bandyopadhyay, G. Rixecker, F. Aldinger, S. Pal, K. Mukherjee, H.S. Maiti, Effect of reaction parameters on γ-AlON formation from Al2O3 and AlN. J. Am. Ceram. Soc. 85(4), 1010–1012 (2002)

    Article  CAS  Google Scholar 

  47. J.L. Shi, Relations between coarsening and densification and mass transport path in solid-state sintering of ceramics: model analysis. J. Mater. Res. 14(4), 1378–1388 (1999)

    Article  CAS  Google Scholar 

  48. J. Zhao, M.P. Harmer, Effect of pore distribution on microstructure development: II, first-and second-generation pores. J. Am. Ceram. Soc. 71(7), 530–539 (1988)

    Article  CAS  Google Scholar 

  49. Y. Zhang et al., Transparent AlON ceramics by nitriding combustion synthesis precursors and pressureless sintering method. Ceramics Int. 48(13), 18165–18173 (2022). (2022/07/01/)

    Article  CAS  Google Scholar 

  50. Z. Ghahramani, A.M. Arabi, M. ShafieeAfarani, M. Mahdavian, Solution combustion synthesis of cerium oxide nanoparticles as corrosion inhibitor. Int. J. Appl. Ceramic Technol. 17(3), 1514–1521 (2020)

    Article  CAS  Google Scholar 

  51. M.M. Golsheikh, A.M. Arabi, M.S. Afarani, Microwave assisted combustion synthesis of photolumiescent ZnAl2O4: Eu nano powders. Mater. Res. Express 6(12), 125052 (2019)

    Article  CAS  Google Scholar 

  52. S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12(3–4), 44–50 (2008)

    Article  CAS  Google Scholar 

  53. A.S. Mukasyan, P. Epstein, P. Dinka, Solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31(2), 1789–1795 (2007)

    Article  Google Scholar 

  54. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116(23), 14493–14586 (2016)

    Article  CAS  Google Scholar 

  55. D. Zhang et al., Properties of intragranular-oxide-strengthened Fe alloys fabricated by a versatile facile and scalable route. Powder Technol. 384, 9–16 (2021)

    Article  CAS  Google Scholar 

  56. W. Liu, X. Liu, P. Zhang, Z. Wang, X. Li, M. Hu, Nano-sized plate-like alumina synthesis via solution combustion. Ceram. Int. 45(8), 9919–9925 (2019)

    Article  CAS  Google Scholar 

  57. Q. He et al., Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia. Ceram. Int. 45(12), 14568–14575 (2019)

    Article  CAS  Google Scholar 

  58. H. Wu et al., AlN powder synthesis by sodium fluoride-assisted carbothermal combustion. Ceram. Int. 40(9), 14447–14452 (2014)

    Article  CAS  Google Scholar 

  59. S. Wang et al., Transmittance enhancement of AlON transparent ceramic by aqueous gel-casting with phosphoric acid-treated powder. J. Eur. Ceram. Soc. 36(16), 4197–4203 (2016)

    Article  CAS  Google Scholar 

  60. R.S. Kumar, R. Johnson, Aqueous slip casting of transparent aluminum oxynitride. J. Am. Ceram. Soc. 99(10), 3220–3225 (2016)

    Article  CAS  Google Scholar 

  61. X. Sun et al., Direct coarse powder aqueous slip casting and pressureless sintering of highly transparent AlON ceramics. Ceram. Int. 46(4), 4850–4856 (2020). (2020/03/01/)

    Article  CAS  Google Scholar 

  62. L. Xuejian, Y. Xianyang, Z. Fang, H. Zhengren, W. Shiwei, Fabrication of aluminum oxynitride transparent ceramics by carbothermal reduction nitridation processing. J. Am. Ceram. Soc. 25(7), 678–682 (2010)

    Google Scholar 

  63. L. Miller, W.D. Kaplan, Water-based method for processing Aluminum Oxynitride (AlON). Int. J. Appl. Ceram. Technol. 5(6), 641–648 (2008)

    Article  CAS  Google Scholar 

  64. R. Senthil Kumar, K. Rajeswari, B. Praveen, U.N.S. Hareesh, R. Johnson, Processing of aluminum oxynitride through aqueous colloidal forming techniques. J. Am. Ceram. Soc. 93(2), 429–435 (2010)

    Article  Google Scholar 

  65. D. Zientara, M.M. Bućko, J. Lis, Alon-based materials prepared by SHS technique. J. Eur. Ceram. Soc. 27(2–3), 775–779 (2007)

    Article  CAS  Google Scholar 

  66. S. Balasubramanian, R.K. Sadangi, V. Shukla, B.H. Kear, D.E. Niesz, Plasma reaction synthesis of alumina-aluminium oxynitride nanocomposite powders. Ceram. Nanomater. Nanotechnol. II 148, 83–90 (2006)

    Google Scholar 

  67. H. Fukuyama, W. Nakao, M. Susa, K. Nagata, New synthetic method of forming aluminum oxynitride by plasma arc melting. J. Am. Ceram. Soc. 82(6), 1381–1387 (1999)

    Article  CAS  Google Scholar 

  68. W. Rafaniello, I.B. Cutler, Preparation of sinterable cubic aluminum oxynitride by the carbothermal nitridation of aluminum oxide. J. Am. Ceram. Soc. 64(10), 128–C (1981)

    Article  Google Scholar 

  69. S.M. Rafiaei, M. Shokouhimehr, Structural and optical characterizations of Ce3+-doped YSO phosphors via the addition of TEOS. Luminescence 36(5), 1117–1123 (2021)

    Article  CAS  Google Scholar 

  70. S.M. Rafiaei, M. Shokouhimehr, Synthesis and luminescence properties of transparent YVO4: Eu3+ phosphors. Mater. Res. Express 5(11), 116208 (2018)

    Article  Google Scholar 

  71. M. Shokouhimehr, S.M. Rafiaei, Combustion synthesized YVO4:Eu3+ phosphors: effect of fuels on nanostructure and luminescence properties. Ceram. Int. 43(14), 11469–11473 (2017). (2017/10/01/)

    Article  CAS  Google Scholar 

  72. A.G. Merzhanov, Self-propagating high-temperature synthesis: about the past, nowadays, and future (instead of Preface). Izvestiia-Vysshie Uchebnye Zavedeniia Tsvetnaia Metallurgiia 5, 5 (2006)

    Google Scholar 

  73. A.I. Gusev, A.A. Rempel, Nanocrystalline Materials (Cambridge Int Science Publishing, 2004)

    Google Scholar 

  74. D.V. Prosvirnin et al., Effect of reaction sintering conditions on properties of ceramics based on alumina oxynitride. Inorg. Mater. Appl. Res. 9(4), 599–602 (2018)

    Article  Google Scholar 

  75. S. Qi, X. J. Mao, B. Y. Chai, and L. Zhang, "Reaction sintering of transparent aluminum oxynitride (AlON) ceramics using MgO and Y2O3 as co-additives," vol. 697, pp. 7–11: Trans Tech Publ.

  76. S. Qi, X.J. Mao, B.Y. Chai, L. Zhang, Reaction sintering of transparent Aluminum Oxynitride (AlON) ceramics using MgO and Y2O3 as co-additives. Key Eng. Mater. 697, 7–11 (2016)

    Article  Google Scholar 

  77. A.V. Samokhin et al., Synthesis of nanoscale zirconium dioxide powders and composites on their basis in thermal DC Plasma. Inorg. Mater. Appl. Res. 6(5), 528–535 (2015)

    Article  Google Scholar 

  78. N. V. Alekseev, A. V. Samokhin, and Y. V. Tsvetkov, "RF Patent 2311225," ed, 2007.

  79. R. Roy, D. Agrawal, J.P. Cheng, M. Mathis, Microwave processing: triumph of applications-driven science in WC-composites and ferroic titanates. Ceram. Trans 80, 3–26 (1997)

    CAS  Google Scholar 

  80. J. Cheng, D. Agrawal, Y. Zhang, B. Drawl, and R. Roy, "American Ceramic Society Bulletin," ed: submitted.

  81. J. Cheng, D. Agrawal, R. Roy, Microwave synthesis of aluminum oxynitride (ALON). J. Mater. Sci. Lett. 18(24), 1989–1990 (1999)

    Article  CAS  Google Scholar 

  82. Y.-W. Kim, R. Malik, SiC ceramics, structure, processing and properties, in Encyclopedia of Materials: Technical Ceramics and Glasses. ed. by M. Pomeroy (Elsevier, Oxford, 2021), pp.150–164

    Chapter  Google Scholar 

  83. P. Patel, "Phase equilibrium and kinetics in the multi-component non-oxide Al–O–N system Ph. D," D.(Baltimore: The Johns Hopkins University), 2000.

  84. K. Maca, Microstructure evolution during pressureless sintering of bulk oxide ceramics. Process. Appl. Ceram. 3(1–2), 13–17 (2009)

    Article  CAS  Google Scholar 

  85. A.A. Kachaev, D.V. Grashchenkov, Y.E. Lebedeva, S.S. Solntsev, O.L. Khasanov, Optically transparent ceramics (review). Glass Ceram. 4, 3–10 (2016)

    Google Scholar 

  86. N.L. Loh, K.Y. Sia, An overview of hot isostatic pressing. J. Mater. Process. Technol. 30(1), 45–65 (1992)

    Article  Google Scholar 

  87. J. Li, B. Zhang, R. Tian, X. Mao, J. Zhang, S. Wang, Hot isostatic pressing of transparent AlON ceramics assisted by dissolution of gas inclusions. J. Eur. Ceram. Soc. 41(7), 4327–4336 (2021). (2021/07/01/)

    Article  CAS  Google Scholar 

  88. N. Jiang et al., Fabrication of highly transparent AlON ceramics by hot isostatic pressing post-treatment. J. Eur. Ceram. Soc. 37(13), 4213–4216 (2017)

    Article  CAS  Google Scholar 

  89. S.H. Lee et al., Hot isostatic pressing of transparent Nd: YAG ceramics. J. Am. Ceram. Soc. 92(7), 1456–1463 (2009)

    Article  CAS  Google Scholar 

  90. D.S. Perera, M. Tokita, S. Moricca, Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 18(4), 401–404 (1998)

    Article  CAS  Google Scholar 

  91. I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto, M. Koizumi, Hot isostatic press sintering and properties of silicon nitride without additives. J. Am. Ceram. Soc. 72(9), 1656–1660 (1989)

    Article  CAS  Google Scholar 

  92. C. Gajdowski et al., Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: from opaque to transparent ceramics. J. Eur. Ceram. Soc. 37(16), 5347–5351 (2017)

    Article  CAS  Google Scholar 

  93. F. Chen et al., Hot isostatic pressing of transparent AlON ceramics with Y2O3/La2O3 additives. J. Alloy. Compd. 650, 753–757 (2015)

    Article  CAS  Google Scholar 

  94. H. Guo et al., Effects of AlN content on mechanical and optical properties of AlON transparent ceramics. Ceram. Int. 46(10), 16677–16683 (2020)

    Article  CAS  Google Scholar 

  95. A. Krell, T. Hutzler, J. Klimke, Transmission physics and consequences for materials selection, manufacturing, and applications. J. Eur. Ceram. Soc. 29(2), 207–221 (2009)

    Article  CAS  Google Scholar 

  96. S. Bodhak et al., In vitro biological and tribological properties of transparent magnesium aluminate (Spinel) and aluminum oxynitride (ALON®). J. Mater. Sci.: Mater. Med. 22(6), 1511–1519 (2011). (2011/06/01)

    CAS  Google Scholar 

  97. X.Y. Yuan, F. Zhang, X.J. Liu, Z. Zhang, S.W. Wang, Fabrication of transparent AlON ceramics by solid-state reaction sintering. Wuji Cailiao Xuebao/Journal of Inorganic Materials 26(5), 499–502 (2011)

    CAS  Google Scholar 

  98. L.M. Goldman, R. Foti, M. Smith, U. Kashalikar, S. Sastri, ALON® transparent armor. Ceram. Eng. Sci. Proc. 30, 225–232 (2010)

    Google Scholar 

  99. J.G. Qi, G.P. Cao, Design of a RF Wideband Receiver. Telecommun. Eng. 47(2), 88–91 (2007)

    Google Scholar 

  100. H. Jiang, H. Du, T. Tian, H. Wu, Influence of Y2O3 additive on transparent of ALON ceramics. Adv. Mater. Res. 105–106, 580–581 (2010)

    Article  Google Scholar 

  101. H.X. Willems, M.M.R.M. Hendrix, R. Metselaar, G. de With, Thermodynamics of Alon I: stability at lower temperatures. J. Eur. Ceram. Soc. 10(4), 327–337 (1992). (1992/01/01/)

    Article  CAS  Google Scholar 

  102. H.X. Willems, G. de With, R. Metselaar, Thermodynamics of alon III: stabilization of alon with MgO. J. Eur. Ceram. Soc. 12(1), 43–49 (1993). (1993/01/01/)

    Article  CAS  Google Scholar 

  103. B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, Spark plasma sintering of transparent alumina. Scripta Mater. 57(7), 607–610 (2007)

    Article  CAS  Google Scholar 

  104. M. Geyer et al., "EUROTROUGH-Parabolic trough collector developed for cost efficient solar power generation," pp. 04–06.

  105. G.C. Wei, Transparent ceramics for lighting. J. Eur. Ceram. Soc. 29(2), 237–244 (2009)

    Article  CAS  Google Scholar 

  106. A. Krell, J. Klimke, T. Hutzler, Advanced spinel and sub-μm Al2O3 for transparent armour applications. J. Eur. Ceram. Soc. 29(2), 275–281 (2009)

    Article  CAS  Google Scholar 

  107. J. Adams. (2019, 04/10/2022). How Much Would it Cost to Make an Aquarium from Transparent Aluminum? Available: https://reefbuilders.com/2019/05/02/transparent-aluminum/

  108. J.M. Wahl, T.M. Hartnett, L.M. Goldman, R. Twedt, C. Warner, Recent advances in ALON optical ceramic. Window Dome Technol. Mater. IX 5786, 71–82 (2005)

    CAS  Google Scholar 

  109. L. M. Goldman, R. Twedt, S. Balasubramanian, and S. Sastri, "ALON optical ceramic transparencies for window, dome, and transparent armor applications," vol. 8016, pp. 64–77: SPIE.

  110. R.A. Beyer, H. Kerwien, Evaluation of ALON for cannon window application. Proc. SPIE – Int. Soc. Opt. Eng. 3705, 113–118 (1999)

    Google Scholar 

  111. Z. Xiao et al., Materials development and potential applications of transparent ceramics: A review. Mater. Sci. Eng. R. Rep. 139, 100518 (2020)

    Article  Google Scholar 

  112. D.C. Harris, Materials for infrared windows and domes: properties and performance (SPIE press, 1999)

    Book  Google Scholar 

  113. M. Ramisetty, S. Sastri, U. Kashalikar, L. M. Goldman, and N. Nag, "cubic spinels protect and defend."

  114. E. Tuncer, "Transparent Armor Material Made From AlON For Defence Applications," 05/27 2020.

  115. M. W. Joseph, M. H. Thomas, M. G. Lee, T. Richard, and W. Charles, "Recent advances in ALON optical ceramic," in Proc.SPIE, 2005, vol. 5786.

  116. S. Chen, Y. Wu, New opportunities for transparent ceramics. Am. Ceram. Soc. Bull. 92(2), 32–37 (2013)

    CAS  Google Scholar 

  117. F. Chen et al., Microstructure and optical properties of transparent aluminum oxynitride ceramics by hot isostatic pressing. Scripta Mater. 81, 20–23 (2014). (2014/06/15/)

    Article  CAS  Google Scholar 

  118. A. Krell, P. Blank, H. Ma, T. Hutzler, M.P.B. Van Bruggen, R. Apetz, Transparent sintered corundum with high hardness and strength. J. Am. Ceram. Soc. 86(1), 12–18 (2003)

    Article  CAS  Google Scholar 

  119. G. C. Kuczynski, Sintering of Crystalline Oxides, in Modern Developments in Powder Metallurgy: Springer, 1966, pp. 332–344.

  120. C. Martin, B. Calés, Synthesis and hot pressing of transparent aluminum oxynitride. Proc. SPIE – Int. Soc. Opt. Eng. 1112, 20–24 (1989)

    CAS  Google Scholar 

  121. D. Zientara, M.M. Bućko, J. Lis, Dielectric properties of aluminium nitride–γ-alon materials. J. Eur. Ceram. Soc. 27(13–15), 4051–4054 (2007)

    Article  CAS  Google Scholar 

  122. K. Wang, S.S. Byeon, B.H. Koo, Nitrogen inducing effect on preparation of AlON–Al2O3 coatings on Al6061 alloy by electrolytic plasma processing. Surf. Coat. Technol. 205, S11–S14 (2010)

    Article  CAS  Google Scholar 

  123. J. Zhang et al., Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powders. Opt. Mater. 58, 290–295 (2016)

    Article  CAS  Google Scholar 

  124. Z. Yang et al., Optical and mechanical properties of Mg-doped sialon composite with La2O3 as additive. J. Eur. Ceram. Soc. 32(4), 931–935 (2012)

    Article  CAS  Google Scholar 

  125. X. Li, J. Huang, J. Luo, Progress and challenges in the synthesis of AlON ceramics by spark plasma sintering. Trans. Indian Ceram. Soc. 76(1), 14–20 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Johannesburg for creating an enabling environment for one to conduct quality research, and every member of the Center for Nanomechanics and Tribocorossion (CNT), University of Johannesburg, South Africa for their moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smith Salifu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, be it financial or personal that could influence the reported work in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salifu, S., Olubambi, P.A. Transparent aluminium ceramics: fabrication techniques, setbacks and prospects. J. Korean Ceram. Soc. 60, 24–40 (2023). https://doi.org/10.1007/s43207-022-00266-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00266-1

Keywords

Navigation