Skip to main content
Log in

Synthesis of superparamagnetic and whole visible light-photocatalytic Ni0.5Zn0.5Fe2O4-core/Ag2O-capped TiO2-shell nanospheres

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Cubic Ag2O-deposited anatase TiO2 nanospheres with cubic Ni0.5Zn0.5Fe2O4-core have been obtained by a 2-stage synthesis. They have been characterized by energy-dispersive X-ray spectroscopy, high-resolution scanning and transmission electron microscopies, X-ray and selected area electron diffractometries, vibrating sample magnetometry, nitrogen adsorption and desorption, and UV–visible diffuse reflectance and photoluminescence spectroscopies. The synthesized samples are superparamagnetic and absorb UV-A light and visible light in the entire wavelength range. Structure directing agent polyvinylpyrrolidone provides little influence on the Ag2O-capping process. The synthesized Ni0.5Zn0.5Fe2O4-core/Ag2O-capped TiO2-shell nanospheres are whole visible light-active magnetically recoverable photocatalyst; capped Ag2O sensitizes anatase TiO2 under whole visible light and the ferrite core buried in TiO2 lattice enables magnetic recovery of the photocatalytic nanospheres.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, L.-S. Zheng, Shape-dependent antibacterial activities of Ag2O polyhedral particles. Langmuir 26, 2774–2778 (2010). https://doi.org/10.1021/la9028172

    Article  CAS  Google Scholar 

  2. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2385–2392 (2010). https://doi.org/10.1021/am100394x

    Article  CAS  Google Scholar 

  3. H. He, Y. Miao, Y. Du, J. Zhao, Y. Liu, P. Yang, Ag2O nanoparticle-decorated TiO2 nanobelts for improved photocatalytic performance. Ceram. Intl. 42A, 97–102 (2016). https://doi.org/10.1016/j.ceramint.2015.07.143

    Article  CAS  Google Scholar 

  4. N. Wei, H. Cui, Q. Song, L. Zhang, X. Song, K. Wang, Y. Zhang, J. Li, J. Wen, J. Tian, Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl. Catal. B 198, 83–90 (2016). https://doi.org/10.1016/j.apcatb.2016.05.040

    Article  CAS  Google Scholar 

  5. Y. You, L. Wan, S. Zhang, D. Xu, Effect of different doping methods on microstructure and photo-catalytic activity of Ag2O-TiO2 nanofibers. Mater. Res. Bull. 45, 1850–1854 (2010). https://doi.org/10.1016/j.materresbull.2010.09.015

    Article  CAS  Google Scholar 

  6. H. Hua, Y. Xi, Z. Zhao, X. Xie, C. Hu, H. Liu, Gram-scale wet chemical synthesis of Ag2O/TiO2 aggregated sphere heterostructure with high photocatalytic activity. Mater. Lett. 91, 81–83 (2013). https://doi.org/10.1016/j.matlet.2012.09.068

    Article  CAS  Google Scholar 

  7. B. Liu, L. Mu, B. Han, J. Zhang, H. Shi, Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation. Appl. Surf. Sci. 396, 1596–1603 (2017). https://doi.org/10.1016/j.apsusc.2016.11.220

    Article  CAS  Google Scholar 

  8. O. Kerkez, I. Boz, Photodegradation of methylene blue with Ag2O/TiO2 under visible light: operational parameters. Chem. Eng. Commun. 202, 534–541 (2015). https://doi.org/10.1080/00986445.2013.853292

    Article  CAS  Google Scholar 

  9. M.E. Olya, M. Vafaee, M. Jahangiri, Modeling of acid dye decolorization by TiO2-Ag2O nano-photocatalytic process using response surface methodology. J. Saudi Chem. Soc. 21, 633–642 (2017). https://doi.org/10.1016/j.jscs.2015.07.006

    Article  CAS  Google Scholar 

  10. C. Wang, X. Cai, Y. Chen, Z. Cheng, P. Lin, Z. Yang, S. Sun, Improved hydrogen production by glycerol photoreforming over Ag2O-TiO2 nanocomposite mixed oxide synthesized by a sol-gel method. Energy Procedia 105, 1657–1664 (2017). https://doi.org/10.1016/j.egypro.2017.03.541

    Article  CAS  Google Scholar 

  11. G. Sadanandam, V.D. Kumari, M.S. Scurrell, Highly stabilized Ag2O-loaded nano TiO2 for hydrogen production from glycerol: water mixtures under solar light irradiation. Int. J. Hydrogen Energy 42, 807–820 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.131

    Article  CAS  Google Scholar 

  12. Z. Yang, W. Zhong, Y. Chen, C. Wang, S. Mo, J. Zhang, R. Shu, Q. Song, Improving glycerol photoreforming hydrogen production over Ag2O-TiO2 catalysts by enhanced colloidal dispersion stability. Front. Chem. 8, 342 (2020). https://doi.org/10.3389/fchem.2020.00342

    Article  CAS  Google Scholar 

  13. B. Jiang, L. Jiang, X. Shi, W. Wang, G. Li, F. Zhu, D. Zhang, Ag2O/TiO2 nanorods heterojunctions as a strong visible-light photocatalyst for phenol treatment. J. Sol-Gel Sci. Technol. 73, 314–321 (2015). https://doi.org/10.1007/s10971-014-3532-0

    Article  CAS  Google Scholar 

  14. D. Sarkar, C.K. Ghosh, S. Mukherjee, K.K. Chattopadhyay, Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces 5, 331–337 (2013). https://doi.org/10.1021/am302136y

    Article  CAS  Google Scholar 

  15. G. Liu, G. Wang, Z. Hu, Y. Su, L. Zhao, Ag2O nanoparticles decorated TiO2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Appl. Surf. Sci. 465, 902–910 (2019). https://doi.org/10.1016/j.apsusc.2018.09.216

    Article  CAS  Google Scholar 

  16. H.-T. Ren, Q. Yang, Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method. Appl. Sur. Sci. 396, 530–538 (2017). https://doi.org/10.1016/j.apsusc.2016.10.191

    Article  CAS  Google Scholar 

  17. H.-T. Ren, J. Han, T.-T. Li, F. Sun, J.-H. Lin, C.-W. Lou, Visible light-induced oxidation of aqueous arsenite using facile Ag2O/TiO2 composites: performance and mechanism. J. Photochem. Photobiol. A 377, 260–267 (2019). https://doi.org/10.1016/j.jphotochem.2019.03.033

    Article  CAS  Google Scholar 

  18. H.-T. Ren, Y. Liang, X. Han, Y. Liu, S.-H. Wu, H. Bai, S.-Y. Jia, Photocatalytic oxidation of aqueous ammonia by Ag2O/TiO2 (P25): new in-insight into selectivity and contributions of different oxidative species. Appl. Surf. Sci. 504, 144433 (2020). https://doi.org/10.1016/j.apsusc.2019.144433

    Article  CAS  Google Scholar 

  19. J.C. Duran-Alvarez, V.A. Hernandez-Morales, M. Rodriguez-Varela, D. Guerrero-Araque, D. Ramirez-Ortega, F. Castillon, P. Acevedo-Pena, R. Zanella, Ag2O/TiO2 nanostructures for the photocatalytic mineralization of the highly recalcitrant pollutant iopromide in pure and tap water. Catal. Today 341, 71–81 (2020). https://doi.org/10.1016/j.cattod.2019.01.027

    Article  CAS  Google Scholar 

  20. L. Chen, H. Hua, Q. Yang, J. Liu, X. Han, Y. Li, C. Zhang, X. Wang, C. Hu, Rational electron transmission structure in an Ag2O/TiO2 (anatase-B) system for effective enhancement of visible light photocatalytic activity. J. Phys. Chem. C 123, 1817–1827 (2019). https://doi.org/10.1021/acs.jpcc.8b09783

    Article  CAS  Google Scholar 

  21. S. Shylesh, V. Schunemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 49, 3428–3459 (2010). https://doi.org/10.1002/anie.200905684

    Article  CAS  Google Scholar 

  22. C. Karunakaran, I.J. Singh, P. Vinayagamoorthy, Synthesis of superparamagnetic Cu0.4Zn0.6Fe2O4-implanted Bi2S3-capped TiO2 2D and 3D nanostructures for visible light photocatalysis. ACS Omega 3, 18958–18966 (2018). https://doi.org/10.1021/acsomega.8b01877

    Article  CAS  Google Scholar 

  23. C. Karunakaran, P. Vinayagamoorthy, Superparamagnetic core/shell Fe2O3/ZnO nanosheets as photocatalyst cum bactericide. Catal. Today 284, 114–120 (2017). https://doi.org/10.1016/j.cattod.2016.11.022

    Article  CAS  Google Scholar 

  24. C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Enhanced photocatalytic activity of magnetically separable bactericidal CuFe2O4-embedded Ag-deposited ZnO nanosheets. RSC Adv. 6, 1782–1791 (2016). https://doi.org/10.1039/c5ra20958g

    Article  CAS  Google Scholar 

  25. C. Karunakaran, P. Vinayagamoorthy, Magnetically recoverable Fe3O4-implanted Ag-loaded ZnO nanoflakes for bacteria-inactivation and photocatalytic degradation of organic pollutants. New J. Chem. 40, 1845–1852 (2016). https://doi.org/10.1039/c5nj02692j

    Article  CAS  Google Scholar 

  26. C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Nonquenching of charge carriers by Fe3O4 core in Fe3O4/ZnO nanosheet photocatalyst. Langmuir 30, 15031–15039 (2014). https://doi.org/10.1021/la5039409

    Article  CAS  Google Scholar 

  27. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  28. A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2012). https://doi.org/10.1021/cr100454n

    Article  CAS  Google Scholar 

  29. L-J. Thoms, R. Girwidz, Experiments from a distance: optical spectrometry via the internet. MPTL18 – Book of Proceedings 59–63 (2013). https://www.researchgate.net/publication/273454510

  30. C. Karunakaran, P. Anilkumar, P. Gomathisankar, Photoproduction of iodine with nanoparticulate semiconductors and insulators. Chem. Cent. J. 5, 31 (2011). https://doi.org/10.1186/1752-153X-5-31

    Article  CAS  Google Scholar 

  31. S.-M. Lam, M.-W. Kee, J.-C. Sin, Influence of PVP surfactant on the morphology and properties of ZnO micro/nanoflowers for dye mixtures and textile wastewater degradation. Mat. Chem. Phys. 212, 35–43 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Council of Scientific and Industrial Research (CSIR), New Delhi [21(0887)12/EMR-II] under Emeritus Scientist Scheme.

Funding

Council of Scientific and Industrial Research, India, 21(0887)/12/EMR-II, Chockalingam Karunakaran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chockalingam Karunakaran.

Ethics declarations

Conflict of interest

The authors have no conflict or competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunakaran, C., Singh, I.J. & Vinayagamoorthy, P. Synthesis of superparamagnetic and whole visible light-photocatalytic Ni0.5Zn0.5Fe2O4-core/Ag2O-capped TiO2-shell nanospheres. J. Korean Ceram. Soc. 60, 283–292 (2023). https://doi.org/10.1007/s43207-022-00262-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00262-5

Keywords

Navigation