Skip to main content

Advertisement

Log in

Facile synthesis of rGO/PANI/ZnO ternary nanocomposites for energy storage devices

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Due to the dire energy needs and the unavailability of energy storage devices, supercapacitors have become an inescapable substitute for energy storage systems. As a high energy density electrode material, we offer rGO/PANI/ZnO ternary nanocomposite designed via the polymerization method and are characterized by various analytical techniques. The results show that rGO/PANI/ZnO has the best capacitive behavior, with a specific capacity of 1546 F/g at 2 mV/s on the eggshell membrane electrode (ESME). The nanocomposite rGO/PANI/ZnO, on the other hand, presented the best cycling stability, retaining 97% of capacity after 3000 cycles. This is due to the fast transfer of electrons between rGO/ZnO and PANI in an electrochemical charge storage device. This research encompasses an enhanced flexible PANI-based electrode to become viable innovative wearable sensor alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Zhang, J. Jiang, H. Li, X. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 4, 4009–4015 (2011)

    Article  CAS  Google Scholar 

  2. K. Wang, X. Dong, C. Zhao, X. Qian, Y. Xu, Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim. Acta 152, 433–442 (2015)

    Article  CAS  Google Scholar 

  3. X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu, A. Yuan, Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 268, 251–259 (2015)

    Article  CAS  Google Scholar 

  4. A. Mishra, G. Bera, P. Mal, G. Padmaja, P. Sen, P. Das, B. Chakraborty, G. Turpu, Comparative electrochemical analysis of rGO-FeVO4 nanocomposite and FeVO4 for supercapacitor application. Appl. Surf. Sci. 488, 221–227 (2019)

    Article  CAS  Google Scholar 

  5. C. Lekakou, O. Moudam, F. Markoulidis, T. Andrews, J. Watts, G. Reed, Carbon-based fibrous EDLC capacitors and supercapacitors. J. Nanotechnol.,(2011)

  6. V.V. Obreja, On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review. Physica E 40, 2596–2605 (2008)

    Article  CAS  Google Scholar 

  7. Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018)

    Article  Google Scholar 

  8. N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F. Fernando, K. Jayaramulu, D. Golberg, Y.K. Han, D.P. Dubal, True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16, 2002806 (2020)

    Article  CAS  Google Scholar 

  9. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767–784 (2012)

    Article  CAS  Google Scholar 

  10. R. Dubey, V. Guruviah, Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25, 1419–1445 (2019)

    Article  CAS  Google Scholar 

  11. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  12. Y.-Z. Su, K. Xiao, N. Li, Z.-Q. Liu, S.-Z. Qiao, Amorphous Ni (OH) 2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A 2, 13845–13853 (2014)

    Article  CAS  Google Scholar 

  13. R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11, 5293–5308 (2017)

    Article  CAS  Google Scholar 

  14. A.L.M. Reddy, S. Ramaprabhu, Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J. Phys. Chem. C 111, 7727–7734 (2007)

    Article  CAS  Google Scholar 

  15. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)

    Article  CAS  Google Scholar 

  16. K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14–31 (2014)

    Article  CAS  Google Scholar 

  17. Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48, 575–580 (2003)

    Article  CAS  Google Scholar 

  18. M. Areir, Y. Xu, D. Harrison, J. Fyson, 3D printing of highly flexible supercapacitor designed for wearable energy storage. Mater. Sci. Eng., B 226, 29–38 (2017)

    Article  CAS  Google Scholar 

  19. B. Asbani, C. Douard, T. Brousse, J. Le Bideau, High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Mater. 21, 439–445 (2019)

    Article  Google Scholar 

  20. W. Liu, N. Liu, Y. Shi, Y. Chen, C. Yang, J. Tao, S. Wang, Y. Wang, J. Su, L. Li, A wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer. J. Mater. Chem. A 3, 13461–13467 (2015)

    Article  CAS  Google Scholar 

  21. Y. Liu, Z. Zeng, R.K. Sharma, S. Gbewonyo, K. Allado, L. Zhang, J. Wei, A bi-functional configuration for a metal-oxide film supercapacitor. J. Power Sources 409, 1–5 (2019)

    Article  CAS  Google Scholar 

  22. Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, S.L. Chou, S.X. Dou, Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 15, 1805381 (2019)

    Article  Google Scholar 

  23. A. Biswal, P.K. Panda, A.N. Acharya, S. Mohapatra, N. Swain, B.C. Tripathy, Z.-T. Jiang, M. Minakshi Sundaram, Role of additives in electrochemical deposition of ternary metal oxide microspheres for supercapacitor applications. ACS Omega 5, 3405–3417 (2020)

    Article  CAS  Google Scholar 

  24. B. Scrosati, Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells. Chem. Rec. 5, 286–297 (2005)

    Article  CAS  Google Scholar 

  25. T.G. Goonan, Lithium use in batteries. (2012)

  26. M. Kandasamy, S. Sahoo, S.K. Nayak, B. Chakraborty, C.S. Rout, Recent advances in engineered metal oxide nanostructures for supercapacitor applications: Experimental and theoretical aspects. J. Mater. Chem. A 9, 17643–17700 (2021)

    Article  CAS  Google Scholar 

  27. B. Talluri, M. Aparna, N. Sreenivasulu, S. Bhattacharya, T. Thomas, High entropy spinel metal oxide (CoCrFeMnNi) 3O4 nanoparticles as a high-performance supercapacitor electrode material. J. Energy Storage 42, 103004 (2021)

    Article  Google Scholar 

  28. M. Ghasemi, Z. Fahimi, O. Moradlou, M.R. Sovizi, Porous gel polymer electrolyte for the solid state metal oxide supercapacitor with a wide potential window. J. Taiwan Inst. Chem. Eng. 118, 223–231 (2021)

    Article  CAS  Google Scholar 

  29. N.M. El-Shafai, A.M. Beltagi, M.M. Ibrahim, M.S. Ramadan, I. El-Mehasseb, Enhancement of the photocurrent and electrochemical properties of the modified nanohybrid composite membrane of cellulose/graphene oxide with magnesium oxide nanoparticle (GO@ CMC. MgO) for photocatalytic antifouling and supercapacitors applications. Electrochim. Acta 392, 138989 (2021)

    Article  CAS  Google Scholar 

  30. J.G. Ruiz-Montoya, V.L. Quispe-Garrido, J.C. Gómez, A.M.B. Moncada, J.M. Gonçalves, Recent progress and prospects on supercapacitor materials based on metal oxide or hydroxide/biomass-derived carbon composites. Sustain. Energy Fuels 5, 5332–5365 (2021)

    Article  CAS  Google Scholar 

  31. A. Gupta, A. Jain, S. Tripathi, Structural, electrical and electrochemical studies of ionic liquid-based polymer gel electrolyte using magnesium salt for supercapacitor application. J. Polym. Res. 28, 1–11 (2021)

    Article  Google Scholar 

  32. U.T. Nakate, P. Patil, Y.T. Nakate, S.-I. Na, Y. Yu, Y.-B. Hahn, Ultrathin ternary metal oxide Bi2MoO6 nanosheets for high performance asymmetric supercapacitor and gas sensor applications. Appl. Surf. Sci. 551, 149422 (2021)

    Article  CAS  Google Scholar 

  33. S.A. Al Kiey, M.S. Hasanin, Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste. Environ. Sci. Pollut. Res. 28, 66888–66900 (2021)

    Article  CAS  Google Scholar 

  34. M.Z. Iqbal, S.S.H.S. Zakar, M. Alzaid, Superior performance of cobalt oxide/carbon composite for solid-state supercapattery devices. Physica B 603, 412561 (2021)

    Article  CAS  Google Scholar 

  35. C. Hsiao, C. Lee, N. Tai, Reduced graphene oxide/oyster shell powers/iron oxide composite electrode for high performance supercapacitors. Electrochim. Acta 391, 138868 (2021)

    Article  CAS  Google Scholar 

  36. X. Sun, J. Wang, B. Chen, G. Dai, Y. Situ, H. Huang, High-performance adjustable manganese oxides hybrid nanostructure for supercapacitors. Electrochim. Acta 381, 138213 (2021)

    Article  CAS  Google Scholar 

  37. R. Samal, A.K. Samantara, S. Mahalik, J. Behera, B. Dash, K. Sanjay, An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors. New J. Chem. 45, 2795–2803 (2021)

    Article  CAS  Google Scholar 

  38. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)

    Article  CAS  Google Scholar 

  39. X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011)

    Article  CAS  Google Scholar 

  40. H. Yang, S. Kannappan, A.S. Pandian, J.-H. Jang, Y.S. Lee, W. Lu, Graphene supercapacitor with both high power and energy density. Nanotechnology 28, 445401 (2017)

    Article  Google Scholar 

  41. A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application. J. Phys. Chem. C 115, 14006–14013 (2011)

    Article  CAS  Google Scholar 

  42. J. Zhang, J. Xu, D. Zhang, A structural supercapacitor based on graphene and hardened cement paste. J. Electrochem. Soc. 163, E83 (2015)

    Article  Google Scholar 

  43. W. Ma, D. Zhang, Multifunctional structural supercapacitor based on graphene and magnesium phosphate cement. J. Compos. Mater. 53, 719–730 (2019)

    Article  CAS  Google Scholar 

  44. K.D. Fong, T. Wang, S.K. Smoukov, Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain. Energy Fuels 1, 1857–1874 (2017)

    Article  CAS  Google Scholar 

  45. G.M. Suppes, B.A. Deore, M.S. Freund, Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications. Langmuir 24, 1064–1069 (2008)

    Article  CAS  Google Scholar 

  46. W. Li, J. Chen, J. Zhao, J. Zhang, J. Zhu, Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor. Mater. Lett. 59, 800–803 (2005)

    Article  CAS  Google Scholar 

  47. K.F. Babu, S.S. Subramanian, M.A. Kulandainathan, Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohyd. Polym. 94, 487–495 (2013)

    Article  Google Scholar 

  48. M. Shao, Z. Li, R. Zhang, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical conducting polymer@ clay core–shell arrays for flexible all-solid-state supercapacitor devices. Small 11, 3530–3538 (2015)

    Article  CAS  Google Scholar 

  49. S. Abbas, G. Yasmeen, S. Manzoor, S. Manzoor, D. Hussain, A. Yousaf, M. Al-Buriahi, B. Alshahrani, M.N. Ashiq, Synergistic effect of reduced graphene oxide layers wrapped in polyaniline sheets to porous blades for boosted oxygen evolution reaction. J. Taibah Univ. Sci. 15, 960–970 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

M. N. Ashiq is highly thankful to Bahauddin Zakariya University, Multan, for financial support. The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R124), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S., Elqahtani, Z.M., Yasmeen, G. et al. Facile synthesis of rGO/PANI/ZnO ternary nanocomposites for energy storage devices. J. Korean Ceram. Soc. 60, 127–140 (2023). https://doi.org/10.1007/s43207-022-00250-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00250-9

Keywords

Navigation