Abstract
The sintering temperature of BaTiO3, prepared by solid-state reaction route, is in general considerably above 1250 °C to obtain dense ceramic. In this regard, we investigate the effect of low sintering temperature on the electrical and dielectric properties of lead-free of Ba1−xYxTi(1−x/4)O3 (x = 0 and 0.02) ceramics. These structures' tetragonality was identified using powder X-ray diffraction and Raman analysis. BaTiO3 has a uniform grain size, but the doped sample consists of a different shape and size with homogeneous morphology and dense microstructure, as observed by scanning electron microscopy. Through dielectric measurements, the Y-doped BT ceramic has a higher Curie temperature (TC) and dielectric constant (126 °C and 6999) at 5 kHz, which explains a dense microstructure. Besides, the dielectric loss was less than 10–1 in the entire temperature range from room temperature to 200 °C. The dielectric constant modeling confirmed the presence of first-order and displacive transitions for both samples, but the diffusive behavior occurred in the undoped sample. Complex impedance and modulus studies have shown the relaxation behavior in Ba0.98Y0.02Ti0.995O3 to be of Debye type.
Similar content being viewed by others
Data availability statement
The authors confirm that the data supporting the findings of this study are available within the article.
References
S. Kumar, O.P. Thakur, V. Luthra, Modulating the effect of yttrium doping on the structural and dielectric properties of barium titanate. Phys. Status Solidi Appl. Mater. Sci. 215, 1–8 (2018). https://doi.org/10.1002/pssa.201700710
A. Hojjati Najafabadi, A. Ghasemi, R. Mozaffarinia, Synthesis and evaluation of microstructural and magnetic properties of Cr3+ substitution barium hexaferrite nanoparticles (BaFe10.5−xAl1.5CrxO19). J. Clust. Sci. 27, 965–978 (2016). https://doi.org/10.1007/s10876-015-0963-x
A. Hojjati-Najafabadi, A. Ghasemi, R. Mozaffarinia, Magneto-electric features of BaFe9.5Al1.5CrO19–CaCu3Ti4O12 nanocomposites. Ceram. Int. 43, 244–249 (2017). https://doi.org/10.1016/j.ceramint.2016.09.145
A.H. Najafabadi, A. Ghasemi, R. Mozaffarinia, Development of novel magnetic-dielectric ceramics for enhancement of reflection loss in X band. Ceram. Int. 42, 13625–13634 (2016). https://doi.org/10.1016/j.ceramint.2016.05.157
B. Luo, X. Wang, E. Tian, G. Li, L. Li, Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations. J. Mater. Chem. C. 3, 8625–8633 (2015). https://doi.org/10.1039/c5tc01622c
Q. Sun, Q. Gu, K. Zhu, J. Wang, J. Qiu, Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3 ceramics derived from sol-hydrothermally synthesized nanopowders. Ceram. Int. 42, 3170–3176 (2016). https://doi.org/10.1016/j.ceramint.2015.10.107
S.P. Culver, V. Stepanov, M. Mecklenburg, S. Takahashi, R.L. Brutchey, Low temperature synthesis and characterization of lanthanide-doped BaTiO3 nanocrystals. Chem. Commun. 50, 3480–3483 (2014). https://doi.org/10.1039/c3cc49575b
Z.C. Li, H. Zhang, X. Zou, B. Bergman, Synthesis of Sm-doped BaTiO3 ceramics and characterization of a secondary phase. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 116, 34–39 (2005). https://doi.org/10.1016/j.mseb.2004.09.017
B.C. Das, A.K.M.A. Hossain, Rietveld refined structure, ferroelectric, magnetic and magnetoelectric response of Gd- substituted Ni–Cu–Zn ferrite and Ca, Zr co-doped BaTiO3 multiferroic composites. J. Alloys Compd. 867, 159068 (2021). https://doi.org/10.1016/j.jallcom.2021.159068
I. Bretos, T. Schneller, R. Waser, D.F. Hennings, D. Park, T. Weirich, Dysprosium-doped (Ba, Sr) TiO3 thin films on nickel foilsfor capacitor applications. J. Am. Ceram. Soc. 96, 1228–1233 (2013). https://doi.org/10.1111/jace.12182
M.M.V. Petrovi, J. Banys, R. Grigalaitis, B.D. Stoanovic, J. Banys, La-doped and La/Mn-co-doped barium titanate ceramics. ACTA Phys. Pol. A. (2013). https://doi.org/10.12693/APhysPolA.124.155
D. Kim, J. Kim, T. Noh, J. Ryu, Y.N. Kim, H. Lee, Dielectric properties and temperature stability of BaTiO3 co-doped La2O3 and Tm2O3. Curr. Appl. Phys. 12, 952–956 (2012). https://doi.org/10.1016/j.cap.2011.12.016
R. Mikkenie, O. Steigelmann, W.A. Groen, J.E. Ten Elshof, A quick method to determine the capacitance characteristics of thin layer X5R multilayer capacitors. J. Eur. Ceram. Soc. 32, 167–173 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.003
A.P.A. Moraes, A.G.S. Filho, P.T.C. Freire, J.M. Filho, J.C. M’Peko, A.C. Hernandes, E. Antonelli, M.W. Blair, R.E. Muenchausen, L.G. Jacobsohn, W. Paraguassu, Structural and optical properties of rare earth-doped (Ba0.77Ca0.23)1–x(Sm, Nd, Pr, Yb) xTiO3. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3594710
C. Ostos, L. Mestres, M.L. Martínez-Sarrión, J.E. García, A. Albareda, R. Perez, Synthesis and characterization of A-site deficient rare-earth doped BaZrxTi1-xO3 perovskite-type compounds. Solid State Sci. 11, 1016–1022 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.01.006
C.-S. Chen, C.-C. Chou, Microstructure and dielectric properties of nano-grained X7R type BaTiO3 ceramic capacitors sintered by. Phys. Scr. 129, 170–174 (2007). https://doi.org/10.1088/0031-8949/2007/T129/039
J. Qi, L. Li, Y. Wang, Y. Fan, Z. Gui, Yttrium doping behavior in BaTiO3 ceramics at different sintered temperature. Mater. Chem. Phys. 82, 423–427 (2003). https://doi.org/10.1016/S0254-0584(03)00264-5
P. Ren, Q. Wang, X. Wang, L. Wang, J. Wang, H. Fan, Effects of doping sites on electrical properties of yttrium doped BaTiO3. Mater. Lett. 174, 197–200 (2016). https://doi.org/10.1016/j.matlet.2016.03.110
M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J. Carru, A. Zegzouti, Room-temperature structural and dielectric properties of praseodymium-doped SrBi2Nb2O9 ceramics. J. Ceram. Sci. Technol. 09, 209–214 (2018). https://doi.org/10.4416/JCST2018-00004
Y.C. Teh, A.A. Saif, P. Poopalan, Sol-gel synthesis and characterization of Ba1-xGdxTiO3+δ Thin films on SiO2/si substrates using spin-coating technique. Medziagotyra. 23, 51–56 (2017). https://doi.org/10.5755/j01.ms.23.1.13954
I. Sakaguchi, S. Hirose, T. Furuta, K. Watanabe, K. Kageyama, S. Hishita, H. Haneda, N. Ohashi, Oxygen diffusion in rare-earth doped BaTiO3 ceramics. Key Eng. Mater. 582, 189–193 (2014). https://doi.org/10.4028/www.scientific.net/KEM.582.189
A. Nfissi, Y. Ababou, M. Belhajji, S. Sayouri, L. Hajji, M.N. Bennani, Investigation of Ba and Ti sites occupation effects on structural, optical and dielectric properties of sol gel processed Y-doped BaTiO3 ceramics. Opt. Mater. Amst. 122, 111708 (2021). https://doi.org/10.1016/j.optmat.2021.111708
G.A. Hernández, G. Murillo, C.J.F. de Romo, C.L.A. Santiago, G. Chadeyron, M.A.J. de Ramirez, S. Velumani, Structural studies of BaTiO3:Er3+ and BaTiO3:Yb3+ powders synthesized by hydrothermal method. J. Rare Earths. 32, 1016–1021 (2014). https://doi.org/10.1016/S1002-0721(14)60176-9
R. Ashiri, Development and investigation of novel nanoparticle embedded solutions with enhanced optical transparency. J. Mater. Res. 29, 2949–2956 (2014). https://doi.org/10.1557/jmr.2014.351
H.Z. Akbas, Z. Aydin, I.H. Karahan, T. Dilsizoglu, S. Turgut, Process control using FT-IR analysis of BaTiO3 from ultrasonically activated BaCO3 and TiO2 Res. World Int. Conf. 11, 27–30 (2016)
S. Kumar, N. Ahlawat, N. Ahlawat, Microwave sintering time optimization to boost structural and electrical properties in BaTiO3 ceramics. J Integr. Sci. Technol. 4, 10–16 (2016)
A. Hojjati-Najafabadi, R. Mozaffarinia, H. Rahimi, R. Shoja-Razavi, E. Paimozd, Mechanical property evaluation of corrosion protection sol-gel nanocomposite coatings. Surf. Eng. 29, 249–254 (2013). https://doi.org/10.1179/1743294412Y.0000000080
N. Torkian, A. Bahrami, A. Hosseini-Abari, M.M. Momeni, M. Abdolkarimi-Mahabadi, A. Bayat, P. Hajipour, H. Amini-Rourani, M.S. Abbasi, S. Torkian, Y. Wen, M. Yazdan-Mehr, A. Hojjati-Najafabadi, Synthesis and characterization of Ag-ion-exchanged zeolite/TiO2 nanocomposites for antibacterial applications and photocatalytic degradation of antibiotics. Environ. Res. 207, 112157 (2022). https://doi.org/10.1016/j.envres.2021.112157
H. Hayashi, T. Nakamura, T. Ebina, In-situ Raman spectroscopy of BaTiO3 particles for tetragonal-cubic transformation. J. Phys. Chem. Solids. 74, 957–962 (2013). https://doi.org/10.1016/j.jpcs.2013.02.010
L.P. Curecheriu, M. Deluca, Z.V. Mocanu, M.V. Pop, V. Nica, N. Horchidan, M.T. Buscaglia, V. Buscaglia, M. Van Bael, A. Hardy, L. Mitoseriu, Investigation of the ferroelectric-relaxor crossover in Ce-doped BaTiO3 ceramics by impedance spectroscopy and Raman study. Phase Trans. 86, 703–714 (2013). https://doi.org/10.1080/01411594.2012.726730
A.M. Hernández-López, S. Guillemet-Fritsch, Z. Valdez-Nava, J.A. Aguilar-Garib, T. Christophe, P. Dufour, J.-J. Demai, D. Bernard, Influence of Y2O3 on the structure of Y2O3-doped BaTiO3 powder and ceramics. Int. J. Eng. Res. Sci. 4, 2395–6992 (2018)
M. Afqir, M. Elaatmani, A. Zegzouti, A. Oufakir, M. Daoud, Sol–gel synthesis, structural and dielectric properties of Y-doped BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00843-x
Y. Sun, L. Hanxing, H. Hua, Z. Shujun, Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 X8R systems. J. Am. Ceram. Soc. (2016). https://doi.org/10.1111/jace.14336
X. Wang, P. Ren, Q. Wang, H. Fan, G. Zhao, Dielectric, piezoelectric and conduction properties of yttrium acceptor-doped BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5315-6
X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba ( Zr 0.2 Ti 0.8) O3 ceramics. Solid State Commun. 131, 163–168 (2004). https://doi.org/10.1016/j.ssc.2004.05.016
J. Peng, J. Zeng, L. Zheng, G. Li, N. Yaacoub, M. Tabellout, A. Gibaud, A. Kassiba, The interplay of phases, structural disorder and dielectric behavior in. J. Alloys Compd. 796, 221–228 (2019). https://doi.org/10.1016/j.jallcom.2019.05.015
D.D. Gulwade, S.M. Bobade, A.R. Kulkarni, P. Gopalan, Dielectric properties of A- and B-site doped BaTiO3 ( II ): La- and Ga-doped solid solutions. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1879075
P. Manimuthu, M.N. Jamal-Ghousia-Mariam, R. Murugaraj, C. Venkateswaran, Metal-like to insulator transition in Lu3Fe5O12. Phys. Lett. Sect. 378, 1402–1406 (2014). https://doi.org/10.1016/j.physleta.2014.03.018
S. Senthilarasu, R. Sathyamoorthy, J.A. Ascencio, S.H. Lee, Y.B. Hahn, Dielectric and ac conduction properties of zinc phthalocyanine (ZnPc) thin films. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2435805
K.J. Hamam, G. Mezei, Z. Khattari, M. Maghrabi, F. Afaneh, W.A. Al-Isawi, F. Salman, Temperature and frequency effect on the electrical properties of bulk nickel phthalocyanine octacarboxylic acid (Ni-Pc(COOH)8). Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-018-2147-7
H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3 ceramics. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176, 540–547 (2011). https://doi.org/10.1016/j.mseb.2011.01.010
B. Behera, P. Nayak, R.N.P. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401–410 (2008). https://doi.org/10.1016/j.materresbull.2007.02.042
B. Behera, P. Nayak, R.N.P. Choudhary, Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater. Chem. Phys. 106, 193–197 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.036
N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633–1641 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08775.x
J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812–2819 (2003). https://doi.org/10.1063/1.1587685
P.B.M.V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, Electrical relaxation in Na, 0.3Si02. J. Am. Ceram. Soc. 55, 492–496 (1972)
S. Ishaq, F. Kanwal, S. Atiq, M. Moussa, U. Azhar, M. Imran, D. Losic, Advancing dielectric and ferroelectric properties of piezoelectric polymers by combining graphene and ferroelectric ceramic additives for energy storage applications. Materials (Basel). 11, 1–16 (2018). https://doi.org/10.3390/ma11091553
M. Coşkun, A.O. Polat, F.M. Coşkun, Z. Durmuş, C.M. Caglar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8, 4634–4648 (2018). https://doi.org/10.1039/c7ra13261a
Acknowledgements
We would like to thank the Center of Analysis and Characterization, Marrakech, Government of Morocco, for the characterization facility.
Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception. Material preparation, data collection and analysis were performed by ZG, AZ, ME, AT, DF, AO, MD and MA. The first draft of the manuscript was written by ZG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gargar, Z., Zegzouti, A., Elaatmani, M. et al. Structure, electrical, and dielectric properties of Ba1−xYxTi(1−x/4)O3 ceramics sintering at low temperature. J. Korean Ceram. Soc. 60, 52–61 (2023). https://doi.org/10.1007/s43207-022-00234-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43207-022-00234-9