Skip to main content
Log in

Structure, electrical, and dielectric properties of Ba1−xYxTi(1−x/4)O3 ceramics sintering at low temperature

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The sintering temperature of BaTiO3, prepared by solid-state reaction route, is in general considerably above 1250 °C to obtain dense ceramic. In this regard, we investigate the effect of low sintering temperature on the electrical and dielectric properties of lead-free of Ba1−xYxTi(1−x/4)O3 (x = 0 and 0.02) ceramics. These structures' tetragonality was identified using powder X-ray diffraction and Raman analysis. BaTiO3 has a uniform grain size, but the doped sample consists of a different shape and size with homogeneous morphology and dense microstructure, as observed by scanning electron microscopy. Through dielectric measurements, the Y-doped BT ceramic has a higher Curie temperature (TC) and dielectric constant (126 °C and 6999) at 5 kHz, which explains a dense microstructure. Besides, the dielectric loss was less than 10–1 in the entire temperature range from room temperature to 200 °C. The dielectric constant modeling confirmed the presence of first-order and displacive transitions for both samples, but the diffusive behavior occurred in the undoped sample. Complex impedance and modulus studies have shown the relaxation behavior in Ba0.98Y0.02Ti0.995O3 to be of Debye type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. S. Kumar, O.P. Thakur, V. Luthra, Modulating the effect of yttrium doping on the structural and dielectric properties of barium titanate. Phys. Status Solidi Appl. Mater. Sci. 215, 1–8 (2018). https://doi.org/10.1002/pssa.201700710

    Article  CAS  Google Scholar 

  2. A. Hojjati Najafabadi, A. Ghasemi, R. Mozaffarinia, Synthesis and evaluation of microstructural and magnetic properties of Cr3+ substitution barium hexaferrite nanoparticles (BaFe10.5−xAl1.5CrxO19). J. Clust. Sci. 27, 965–978 (2016). https://doi.org/10.1007/s10876-015-0963-x

    Article  CAS  Google Scholar 

  3. A. Hojjati-Najafabadi, A. Ghasemi, R. Mozaffarinia, Magneto-electric features of BaFe9.5Al1.5CrO19–CaCu3Ti4O12 nanocomposites. Ceram. Int. 43, 244–249 (2017). https://doi.org/10.1016/j.ceramint.2016.09.145

    Article  CAS  Google Scholar 

  4. A.H. Najafabadi, A. Ghasemi, R. Mozaffarinia, Development of novel magnetic-dielectric ceramics for enhancement of reflection loss in X band. Ceram. Int. 42, 13625–13634 (2016). https://doi.org/10.1016/j.ceramint.2016.05.157

    Article  CAS  Google Scholar 

  5. B. Luo, X. Wang, E. Tian, G. Li, L. Li, Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations. J. Mater. Chem. C. 3, 8625–8633 (2015). https://doi.org/10.1039/c5tc01622c

    Article  CAS  Google Scholar 

  6. Q. Sun, Q. Gu, K. Zhu, J. Wang, J. Qiu, Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3 ceramics derived from sol-hydrothermally synthesized nanopowders. Ceram. Int. 42, 3170–3176 (2016). https://doi.org/10.1016/j.ceramint.2015.10.107

    Article  CAS  Google Scholar 

  7. S.P. Culver, V. Stepanov, M. Mecklenburg, S. Takahashi, R.L. Brutchey, Low temperature synthesis and characterization of lanthanide-doped BaTiO3 nanocrystals. Chem. Commun. 50, 3480–3483 (2014). https://doi.org/10.1039/c3cc49575b

    Article  CAS  Google Scholar 

  8. Z.C. Li, H. Zhang, X. Zou, B. Bergman, Synthesis of Sm-doped BaTiO3 ceramics and characterization of a secondary phase. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 116, 34–39 (2005). https://doi.org/10.1016/j.mseb.2004.09.017

    Article  CAS  Google Scholar 

  9. B.C. Das, A.K.M.A. Hossain, Rietveld refined structure, ferroelectric, magnetic and magnetoelectric response of Gd- substituted Ni–Cu–Zn ferrite and Ca, Zr co-doped BaTiO3 multiferroic composites. J. Alloys Compd. 867, 159068 (2021). https://doi.org/10.1016/j.jallcom.2021.159068

    Article  CAS  Google Scholar 

  10. I. Bretos, T. Schneller, R. Waser, D.F. Hennings, D. Park, T. Weirich, Dysprosium-doped (Ba, Sr) TiO3 thin films on nickel foilsfor capacitor applications. J. Am. Ceram. Soc. 96, 1228–1233 (2013). https://doi.org/10.1111/jace.12182

    Article  CAS  Google Scholar 

  11. M.M.V. Petrovi, J. Banys, R. Grigalaitis, B.D. Stoanovic, J. Banys, La-doped and La/Mn-co-doped barium titanate ceramics. ACTA Phys. Pol. A. (2013). https://doi.org/10.12693/APhysPolA.124.155

    Article  Google Scholar 

  12. D. Kim, J. Kim, T. Noh, J. Ryu, Y.N. Kim, H. Lee, Dielectric properties and temperature stability of BaTiO3 co-doped La2O3 and Tm2O3. Curr. Appl. Phys. 12, 952–956 (2012). https://doi.org/10.1016/j.cap.2011.12.016

    Article  Google Scholar 

  13. R. Mikkenie, O. Steigelmann, W.A. Groen, J.E. Ten Elshof, A quick method to determine the capacitance characteristics of thin layer X5R multilayer capacitors. J. Eur. Ceram. Soc. 32, 167–173 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.003

    Article  CAS  Google Scholar 

  14. A.P.A. Moraes, A.G.S. Filho, P.T.C. Freire, J.M. Filho, J.C. M’Peko, A.C. Hernandes, E. Antonelli, M.W. Blair, R.E. Muenchausen, L.G. Jacobsohn, W. Paraguassu, Structural and optical properties of rare earth-doped (Ba0.77Ca0.23)1–x(Sm, Nd, Pr, Yb) xTiO3. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3594710

    Article  Google Scholar 

  15. C. Ostos, L. Mestres, M.L. Martínez-Sarrión, J.E. García, A. Albareda, R. Perez, Synthesis and characterization of A-site deficient rare-earth doped BaZrxTi1-xO3 perovskite-type compounds. Solid State Sci. 11, 1016–1022 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.01.006

    Article  CAS  Google Scholar 

  16. C.-S. Chen, C.-C. Chou, Microstructure and dielectric properties of nano-grained X7R type BaTiO3 ceramic capacitors sintered by. Phys. Scr. 129, 170–174 (2007). https://doi.org/10.1088/0031-8949/2007/T129/039

    Article  CAS  Google Scholar 

  17. J. Qi, L. Li, Y. Wang, Y. Fan, Z. Gui, Yttrium doping behavior in BaTiO3 ceramics at different sintered temperature. Mater. Chem. Phys. 82, 423–427 (2003). https://doi.org/10.1016/S0254-0584(03)00264-5

    Article  CAS  Google Scholar 

  18. P. Ren, Q. Wang, X. Wang, L. Wang, J. Wang, H. Fan, Effects of doping sites on electrical properties of yttrium doped BaTiO3. Mater. Lett. 174, 197–200 (2016). https://doi.org/10.1016/j.matlet.2016.03.110

    Article  CAS  Google Scholar 

  19. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J. Carru, A. Zegzouti, Room-temperature structural and dielectric properties of praseodymium-doped SrBi2Nb2O9 ceramics. J. Ceram. Sci. Technol. 09, 209–214 (2018). https://doi.org/10.4416/JCST2018-00004

    Article  Google Scholar 

  20. Y.C. Teh, A.A. Saif, P. Poopalan, Sol-gel synthesis and characterization of Ba1-xGdxTiO3+δ Thin films on SiO2/si substrates using spin-coating technique. Medziagotyra. 23, 51–56 (2017). https://doi.org/10.5755/j01.ms.23.1.13954

    Article  Google Scholar 

  21. I. Sakaguchi, S. Hirose, T. Furuta, K. Watanabe, K. Kageyama, S. Hishita, H. Haneda, N. Ohashi, Oxygen diffusion in rare-earth doped BaTiO3 ceramics. Key Eng. Mater. 582, 189–193 (2014). https://doi.org/10.4028/www.scientific.net/KEM.582.189

    Article  CAS  Google Scholar 

  22. A. Nfissi, Y. Ababou, M. Belhajji, S. Sayouri, L. Hajji, M.N. Bennani, Investigation of Ba and Ti sites occupation effects on structural, optical and dielectric properties of sol gel processed Y-doped BaTiO3 ceramics. Opt. Mater. Amst. 122, 111708 (2021). https://doi.org/10.1016/j.optmat.2021.111708

    Article  CAS  Google Scholar 

  23. G.A. Hernández, G. Murillo, C.J.F. de Romo, C.L.A. Santiago, G. Chadeyron, M.A.J. de Ramirez, S. Velumani, Structural studies of BaTiO3:Er3+ and BaTiO3:Yb3+ powders synthesized by hydrothermal method. J. Rare Earths. 32, 1016–1021 (2014). https://doi.org/10.1016/S1002-0721(14)60176-9

    Article  CAS  Google Scholar 

  24. R. Ashiri, Development and investigation of novel nanoparticle embedded solutions with enhanced optical transparency. J. Mater. Res. 29, 2949–2956 (2014). https://doi.org/10.1557/jmr.2014.351

    Article  CAS  Google Scholar 

  25. H.Z. Akbas, Z. Aydin, I.H. Karahan, T. Dilsizoglu, S. Turgut, Process control using FT-IR analysis of BaTiO3 from ultrasonically activated BaCO3 and TiO2 Res. World Int. Conf. 11, 27–30 (2016)

    Google Scholar 

  26. S. Kumar, N. Ahlawat, N. Ahlawat, Microwave sintering time optimization to boost structural and electrical properties in BaTiO3 ceramics. J Integr. Sci. Technol. 4, 10–16 (2016)

    Google Scholar 

  27. A. Hojjati-Najafabadi, R. Mozaffarinia, H. Rahimi, R. Shoja-Razavi, E. Paimozd, Mechanical property evaluation of corrosion protection sol-gel nanocomposite coatings. Surf. Eng. 29, 249–254 (2013). https://doi.org/10.1179/1743294412Y.0000000080

    Article  CAS  Google Scholar 

  28. N. Torkian, A. Bahrami, A. Hosseini-Abari, M.M. Momeni, M. Abdolkarimi-Mahabadi, A. Bayat, P. Hajipour, H. Amini-Rourani, M.S. Abbasi, S. Torkian, Y. Wen, M. Yazdan-Mehr, A. Hojjati-Najafabadi, Synthesis and characterization of Ag-ion-exchanged zeolite/TiO2 nanocomposites for antibacterial applications and photocatalytic degradation of antibiotics. Environ. Res. 207, 112157 (2022). https://doi.org/10.1016/j.envres.2021.112157

    Article  CAS  Google Scholar 

  29. H. Hayashi, T. Nakamura, T. Ebina, In-situ Raman spectroscopy of BaTiO3 particles for tetragonal-cubic transformation. J. Phys. Chem. Solids. 74, 957–962 (2013). https://doi.org/10.1016/j.jpcs.2013.02.010

    Article  CAS  Google Scholar 

  30. L.P. Curecheriu, M. Deluca, Z.V. Mocanu, M.V. Pop, V. Nica, N. Horchidan, M.T. Buscaglia, V. Buscaglia, M. Van Bael, A. Hardy, L. Mitoseriu, Investigation of the ferroelectric-relaxor crossover in Ce-doped BaTiO3 ceramics by impedance spectroscopy and Raman study. Phase Trans. 86, 703–714 (2013). https://doi.org/10.1080/01411594.2012.726730

    Article  CAS  Google Scholar 

  31. A.M. Hernández-López, S. Guillemet-Fritsch, Z. Valdez-Nava, J.A. Aguilar-Garib, T. Christophe, P. Dufour, J.-J. Demai, D. Bernard, Influence of Y2O3 on the structure of Y2O3-doped BaTiO3 powder and ceramics. Int. J. Eng. Res. Sci. 4, 2395–6992 (2018)

    Google Scholar 

  32. M. Afqir, M. Elaatmani, A. Zegzouti, A. Oufakir, M. Daoud, Sol–gel synthesis, structural and dielectric properties of Y-doped BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00843-x

    Article  Google Scholar 

  33. Y. Sun, L. Hanxing, H. Hua, Z. Shujun, Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 X8R systems. J. Am. Ceram. Soc. (2016). https://doi.org/10.1111/jace.14336

    Article  Google Scholar 

  34. X. Wang, P. Ren, Q. Wang, H. Fan, G. Zhao, Dielectric, piezoelectric and conduction properties of yttrium acceptor-doped BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5315-6

    Article  Google Scholar 

  35. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba ( Zr 0.2 Ti 0.8) O3 ceramics. Solid State Commun. 131, 163–168 (2004). https://doi.org/10.1016/j.ssc.2004.05.016

    Article  CAS  Google Scholar 

  36. J. Peng, J. Zeng, L. Zheng, G. Li, N. Yaacoub, M. Tabellout, A. Gibaud, A. Kassiba, The interplay of phases, structural disorder and dielectric behavior in. J. Alloys Compd. 796, 221–228 (2019). https://doi.org/10.1016/j.jallcom.2019.05.015

    Article  CAS  Google Scholar 

  37. D.D. Gulwade, S.M. Bobade, A.R. Kulkarni, P. Gopalan, Dielectric properties of A- and B-site doped BaTiO3 ( II ): La- and Ga-doped solid solutions. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1879075

    Article  Google Scholar 

  38. P. Manimuthu, M.N. Jamal-Ghousia-Mariam, R. Murugaraj, C. Venkateswaran, Metal-like to insulator transition in Lu3Fe5O12. Phys. Lett. Sect. 378, 1402–1406 (2014). https://doi.org/10.1016/j.physleta.2014.03.018

    Article  CAS  Google Scholar 

  39. S. Senthilarasu, R. Sathyamoorthy, J.A. Ascencio, S.H. Lee, Y.B. Hahn, Dielectric and ac conduction properties of zinc phthalocyanine (ZnPc) thin films. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2435805

    Article  Google Scholar 

  40. K.J. Hamam, G. Mezei, Z. Khattari, M. Maghrabi, F. Afaneh, W.A. Al-Isawi, F. Salman, Temperature and frequency effect on the electrical properties of bulk nickel phthalocyanine octacarboxylic acid (Ni-Pc(COOH)8). Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-018-2147-7

    Article  Google Scholar 

  41. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3 ceramics. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176, 540–547 (2011). https://doi.org/10.1016/j.mseb.2011.01.010

    Article  CAS  Google Scholar 

  42. B. Behera, P. Nayak, R.N.P. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401–410 (2008). https://doi.org/10.1016/j.materresbull.2007.02.042

    Article  CAS  Google Scholar 

  43. B. Behera, P. Nayak, R.N.P. Choudhary, Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater. Chem. Phys. 106, 193–197 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.036

    Article  CAS  Google Scholar 

  44. N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633–1641 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08775.x

    Article  CAS  Google Scholar 

  45. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812–2819 (2003). https://doi.org/10.1063/1.1587685

    Article  CAS  Google Scholar 

  46. P.B.M.V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, Electrical relaxation in Na, 0.3Si02. J. Am. Ceram. Soc. 55, 492–496 (1972)

    Article  CAS  Google Scholar 

  47. S. Ishaq, F. Kanwal, S. Atiq, M. Moussa, U. Azhar, M. Imran, D. Losic, Advancing dielectric and ferroelectric properties of piezoelectric polymers by combining graphene and ferroelectric ceramic additives for energy storage applications. Materials (Basel). 11, 1–16 (2018). https://doi.org/10.3390/ma11091553

    Article  CAS  Google Scholar 

  48. M. Coşkun, A.O. Polat, F.M. Coşkun, Z. Durmuş, C.M. Caglar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8, 4634–4648 (2018). https://doi.org/10.1039/c7ra13261a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Center of Analysis and Characterization, Marrakech, Government of Morocco, for the characterization facility.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Material preparation, data collection and analysis were performed by ZG, AZ, ME, AT, DF, AO, MD and MA. The first draft of the manuscript was written by ZG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zineb Gargar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargar, Z., Zegzouti, A., Elaatmani, M. et al. Structure, electrical, and dielectric properties of Ba1−xYxTi(1−x/4)O3 ceramics sintering at low temperature. J. Korean Ceram. Soc. 60, 52–61 (2023). https://doi.org/10.1007/s43207-022-00234-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00234-9

Keywords

Navigation