Skip to main content
Log in

Characteristics of La-doped BSO(LBSO) transparent conductive oxide as a hole transport layer

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

A Correction to this article was published on 27 June 2023

This article has been updated

Abstract

BaSnO3 (BSO) is a popular next-generation material with various applications such as solar cells and displays. However, it exhibits high electrical conductivity only in its single-crystal form. It is difficult to synthesize single crystals of a material with a perovskite structure; therefore, there has been extensive research on BSO, but this has been limited to solar cells. The improvement in electrical conductivity, carrier concentration, and mobility of spin-coated BSO through La-doping has been demonstrated by many researchers. Herein, the feasibility of spin-coated BSO as a hole transport layer (HTL) is demonstrated using doping and plating, specifically, Ag-plating is used to enhance the electrical conductivity of amorphous La-doped BSO. The proposed La-doping and Ag-plating method improved the electrical conductivity of amorphous BSO and mitigated the need of using vacuum equipment for single crystals. An OLED was fabricated using the Ag-plated LBSO as the HTL, and its EL and I–V–L characteristics were investigated. The findings of this study provide insights for further research on BSO—which is presently limited to solar cells—and demonstrate the possibility of using BSO in OLEDs. Through a 4-point probe, it was confirmed that 30 wt% of Ag-plated samples had a resistance of about 50 Ω. In addition, the I–V–L results confirmed that LBSO had a Luminance of about 190,000 cd/m2 and a current efficiency of about 23 cd/A, and that LBSO could be used as HTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh, E. Hwang, D.H. Yoon, S. Kim, ACS Nano 14(8), 9796–9806 (2020)

    Article  CAS  Google Scholar 

  2. S. Lee, S. Kwak, T. Park, B. Son, H.J. Yun, J. Hur, H. Yoo, Molecules 26(18), 5446 (2021)

    Article  CAS  Google Scholar 

  3. M.Y. Oh, J.J. Lee, H.S. Park, T.Y. Kim, Y.S. Lee, A. Vanchiappan, K.S. Nahm, J. Ind. Eng. Chem. 80, 686–695 (2019)

    Article  CAS  Google Scholar 

  4. H. Mizoguchi, P.M. Woodward, C.H. Park, D.A. Keszler, J. Am. Chem. Soc. 126(31), 9796–9800 (2004)

    Article  CAS  Google Scholar 

  5. Q. Liu, J. Dai, Y. Zhang, H. Li, B. Li, Z. Liu, W. Wang, J. Alloy. Compd. 655, 389–394 (2016)

    Article  CAS  Google Scholar 

  6. K. Ganguly, A. Prakash, B. Jalan, C. Leighton, APL Mater. 5(5), 056102 (2017)

    Article  Google Scholar 

  7. B. Luo, J. Hu, ACS Appl. Electron. Mater. 1(1), 51–57 (2018)

    Article  Google Scholar 

  8. A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J.W. Ager, C.S. Lo, B. Jalan, Nat. Commun. 8(1), 1–9 (2017)

    Article  Google Scholar 

  9. C. Sun, L. Guan, Y. Guo, B. Fang, J. Yang, H. Duan, Y. Chen, H. Li, H. Liu, J. Alloy. Compd. 722, 196–206 (2017)

    Article  CAS  Google Scholar 

  10. L. Zhu, Z. Shao, J. Ye, X. Zhang, X. Pan, S. Dai, Chem. Commun. 52(5), 970–973 (2016)

    Article  CAS  Google Scholar 

  11. D.W. Kim, S.S. Shin, S. Lee, I.S. Cho, D.H. Kim, C.W. Lee, H.S. Jung, K.S. Hong, Chemsuschem 6(3), 449–454 (2013)

    Article  CAS  Google Scholar 

  12. R.H. Wei, X.W.Z.Z. Tang, X. Hui, J.M. Luo, J. Dai, W.H. Yang, L. Song, X.G. Chen, X.B. Zhu, Y.P. Sun, Appl. Phys. Lett. 106(10), 101906 (2015)

    Article  Google Scholar 

  13. C. Shan, T. Huang, J. Zhang, M. Han, Y. Li, Z. Hu, J. Chu, J. Phys. Chem. C 118(13), 6994–7001 (2014)

    Article  CAS  Google Scholar 

  14. R. Wei, X. Tang, L. Hu, X. Luo, J. Yang, W. Song, J. Dai, X. Zhu, Y. Sun, ACS Appl. Energy Mater. 1(4), 1585–1593 (2018)

    Article  CAS  Google Scholar 

  15. R. Köferstein, F. Yakuphanoglu, J. Alloy. Compd. 506(2), 678–682 (2010)

    Article  Google Scholar 

  16. T.T. Zhang, X.D. Gao, Y.Q. Wu, J.N. Yang, X.M. Li, Chem. Phys. 522, 91–98 (2019)

    Article  CAS  Google Scholar 

  17. H. Mizoguchi, P. Chen, P. Boolchand, V. Ksenofontov, C. Felser, P.W. Barnes, P.M. Woodward, Chem. Mater. 25(19), 3858–3866 (2013)

    Article  CAS  Google Scholar 

  18. Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, G. Ding, J. Phys. D Appl. Phys. 43(45), 455401 (2010)

    Article  Google Scholar 

  19. T.R. Sobahi, M.S. Amin, R.M. Mohamed, Appl. Nanosci. 8(3), 557–565 (2018)

    Article  CAS  Google Scholar 

  20. Q. Liu, Y. He, H. Li, B. Li, G. Gao, L. Fan, J. Dai, Appl. Phys. Express 7(3), 033006 (2014)

    Article  CAS  Google Scholar 

  21. Q. Liu, J. Dai, H. Li, B. Li, Y. Zhang, K. Dai, S. Chen, J. Alloy. Compd. 647, 959–964 (2015)

    Article  CAS  Google Scholar 

  22. B. Li, Q. Liu, Y. Zhang, Z. Liu, L. Geng, J. Alloy. Compd. 680, 343–349 (2016)

    Article  CAS  Google Scholar 

  23. N. Purushothamreddy, M. Kovendhan, R.K. Dileep, G. Veerappan, K.S. Kumar, D.P. Joseph, Mater. Chem. Phys. 250, 123137 (2020)

    Article  CAS  Google Scholar 

  24. K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, J. Phys. Chem. Solids 76, 64–69 (2015)

    Article  CAS  Google Scholar 

  25. L. Zhu, J. Ye, X. Zhang, H. Zheng, G. Liu, X. Pan, S. Dai, J. Mater. Chem. A 5(7), 3675–3682 (2017)

    Article  CAS  Google Scholar 

  26. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S.I. Seok, Science 356(6334), 167–171 (2017)

    Article  CAS  Google Scholar 

  27. D.K. Hwang, M. Misra, J.M. Myoung, T.I. Lee, Appl. Surf. Sci. 503, 144308 (2020)

    Article  CAS  Google Scholar 

  28. M. Yasukawa, T. Kono, K. Ueda, H. Yanagi, H. Hosono, Mater. Sci. Eng. B 173(1–3), 29–32 (2010)

    Article  CAS  Google Scholar 

  29. M.J. Prajapati, R.V. Vardhan, S. Mandal, Ceram. Int. 45(14), 17420–17428 (2019)

    Article  CAS  Google Scholar 

  30. B.C. Luo, J. Zhang, J. Wang, P.X. Ran, Ceram. Int. 41(2), 2668–2672 (2015)

    Article  CAS  Google Scholar 

  31. E. Lin, Z. Kang, J. Wu, R. Huang, N. Qin, D. Bao, Appl. Catal. B 285, 119823 (2021)

    Article  CAS  Google Scholar 

  32. V. Babaahmadi, M. Montazer, W. Gao, Carbon 118, 443–451 (2017)

    Article  CAS  Google Scholar 

  33. J. Zou, M. Zhang, K. Zhao, Q. Zhang, M. Deng, F. Huang, L. Kang, Z. Hu, J. Zhang, W. Li, IEEE Trans. Electron Dev. 68(10), 5120–5126 (2021)

    Article  CAS  Google Scholar 

  34. T.U. Kampen, A. Das, S. Park, W. Hoyer, D.R.T. Zahn, Appl. Surf. Sci. 234(1–4), 333–340 (2004)

    Article  CAS  Google Scholar 

  35. Y. Zhai, F. Li, L. Ling, C. Chen, Appl. Surf. Sci. 384, 217–224 (2016)

    Article  CAS  Google Scholar 

  36. R. Wang, L. Zhao, L. Li, Q. Song, J. Huang, J. Phys. Chem. Solids 136, 109148 (2020)

    Article  CAS  Google Scholar 

  37. A. Prakash, N.F. Quackenbush, H. Yun, J. Held, T. Wang, T. Truttmann, J.M. Ablett, C. Weiland, T.L. Lee, J.C. Woicik, K.A. Mkhoyan, B. Jalan, Nano Lett. 19(12), 8920–8927 (2019)

    Article  CAS  Google Scholar 

  38. Y. Guo, Y. Xue, C. Geng, C. Li, X. Li, Y. Niu, J. Phys. Chem. C 123(26), 16075–16082 (2019)

    Article  CAS  Google Scholar 

  39. R.A.K. Yadav, D.K. Dubey, S.Z. Chen, T.W. Liang, J.H. Jou, Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program) (20006511, Development of electrode materials for OLED pixels and core technology for printing processes to apply on a non-vacuum process) funded by the Ministry of Trade, Industry, & Energy (MOTIE, Korea), and this work was supported by the Gachon University research fund of 2019 (GCU-2019-0831).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae Gyu Moon or Young Soo Yoon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Jo, J.H., Park, D.Y. et al. Characteristics of La-doped BSO(LBSO) transparent conductive oxide as a hole transport layer. J. Korean Ceram. Soc. 59, 631–637 (2022). https://doi.org/10.1007/s43207-022-00226-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00226-9

Keywords

Navigation