Skip to main content
Log in

Hydroxyapatite nanoparticles synthesized with a wide range of Ca/P molar ratios and their structural, optical, and dielectric characterization

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) nanomaterials have been synthesized via wet-chemical precipitation route with Ca/P molar ratios of 1.40, 1.60, 1.67, 1.80 and 2.00. These samples have been characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRPD), Rietveld refinement and dielectric spectroscopy. Micrographs from SEM showed that the calcined HAp particles were spherical in shape and they were highly agglomerated. The chemical composition derived from EDX was in good accordance with the theoretical Ca/P ratio. FT-IR spectroscopy revealed the characteristic functional groups: PO43− and OH. Certain peaks were observed in the diffuse reflectance spectrum which is argued to originate from O2− → Ca2+ and O2− → P5+ charge transfer transitions. Phase analysis showed the existence of single pure HAp (\(\mathrm{P}{6}_{3}/\mathrm{m}\)) only for samples with Ca/P = 1.6 and 1.67. However, HAp with Ca/P = 1.4 had tricalcium phosphate (TCP, Ca3(PO4)2) as the secondary phase, while Ca/P = 1.8 and 2.0 had CaCO3 as the secondary phase. Thermograms displayed multiple steps indicating the degradation of secondary phases at higher temperatures. Further, XRD analysis of post-TGA samples revealed that there was no change in the space group symmetry; however, the phase identified was Ca5(PO4)3(CO3)0.01(OH)1.3. The dielectric constant (\({\varepsilon }^{^{\prime}}\)) and dielectric loss (\(\mathrm{tan}\delta\)) decline with enhancing frequency corresponding well with space-charge and ionic-type polarization behaviour. The ac electrical conductivity enhanced with increasing frequency obeying the Jonscher universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Zaccaria, S.J. Tharakan, S. Altermatt, Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience. Child’s Nerv. Syst. 33, 343–348 (2017). https://doi.org/10.1007/s00381-016-3327-4

    Article  Google Scholar 

  2. A. Jaafar, C. Hecker, P. Árki, Y. Joseph, Sol-gel derived hydroxyapatite coatings for titanium implants: a review. Bioengineering 7, 1–23 (2020). https://doi.org/10.3390/bioengineering7040127

    Article  CAS  Google Scholar 

  3. D. Arcos, M. Vallet-Regí, Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B. 8, 1781–1800 (2020). https://doi.org/10.1039/c9tb02710f

    Article  CAS  Google Scholar 

  4. P. Feng, S. Peng, C. Shuai, C. Gao, W. Yang, S. Bin, A. Min, In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity. ACS Appl. Mater. Interfaces. 12, 46743–46755 (2020). https://doi.org/10.1021/acsami.0c13768

    Article  CAS  Google Scholar 

  5. G. Montalbano, G. Molino, S. Fiorilli, C. Vitale-Brovarone, Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: a hybrid formulation for 3D printing of bone scaffolds. J. Eur. Ceram. Soc. 40, 3689–3697 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.018

    Article  CAS  Google Scholar 

  6. H. Huang, M. Du, J. Chen, S. Zhong, J. Wang, Preparation and characterization of abalone shells derived biological mesoporous hydroxyapatite microspheres for drug delivery. Mater. Sci. Eng. C. (2020). https://doi.org/10.1016/j.msec.2020.110969

    Article  Google Scholar 

  7. S. Lee, T. Miyajima, A. Sugawara-Narutaki, K. Kato, F. Nagata, Development of paclitaxel-loaded poly(lactic acid)/hydroxyapatite core-shell nanoparticles as a stimuli-responsive drug delivery system. R. Soc. Open Sci. (2021). https://doi.org/10.1098/rsos.202030

    Article  Google Scholar 

  8. Y. Liu, Y. Tang, J. Wu, J. Sun, X. Liao, Z. Teng, G. Lu, Facile synthesis of biodegradable flower-like hydroxyapatite for drug and gene delivery. J. Colloid Interface Sci. 570, 402–410 (2020). https://doi.org/10.1016/j.jcis.2020.03.010

    Article  CAS  Google Scholar 

  9. A. Fihri, C. Len, R.S. Varma, A. Solhy, Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48–76 (2017). https://doi.org/10.1016/j.ccr.2017.06.009

    Article  CAS  Google Scholar 

  10. G. Bharath, K. Rambabu, A. Hai, H. Taher, F. Banat, Development of Au and 1D hydroxyapatite nanohybrids supported on 2D boron nitride sheets as highly efficient catalysts for dehydrogenating glycerol to lactic acid. ACS Sustain. Chem. Eng. 8, 7278–7289 (2020). https://doi.org/10.1021/acssuschemeng.9b06997

    Article  CAS  Google Scholar 

  11. H. Martínez-Hernández, J.A. Mendoza-Nieto, H. Pfeiffer, J. Ortiz-Landeros, L. Téllez-Jurado, Development of novel nano-hydroxyapatite doped with silver as effective catalysts for carbon monoxide oxidation. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125992

    Article  Google Scholar 

  12. J. Guo, P.N. Duchesne, L. Wang, R. Song, M. Xia, U. Ulmer, W. Sun, Y. Dong, J.Y.Y. Loh, N.P. Kherani, J. Du, B. Zhu, W. Huang, S. Zhang, G.A. Ozin, High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction. ACS Catal. 10, 13668–13681 (2020). https://doi.org/10.1021/acscatal.0c03806

    Article  CAS  Google Scholar 

  13. A. Haider, S. Haider, S.S. Han, I.-K. Kang, Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv. 7, 7442–7458 (2017). https://doi.org/10.1039/c6ra26124h

    Article  CAS  Google Scholar 

  14. A. Das, D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Mater. Sci. Eng. C. 101, 539–563 (2019). https://doi.org/10.1016/j.msec.2019.03.077

    Article  CAS  Google Scholar 

  15. D.S. Gomes, A.M.C. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine. Ceramica. 65, 282–302 (2019). https://doi.org/10.1590/0366-69132019653742706

    Article  CAS  Google Scholar 

  16. M. Ibrahim, M. Labaki, J.-M. Giraudon, J.-F. Lamonier, Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121139

    Article  Google Scholar 

  17. T. Chatterjee, A.K. Das, S. Lala, S.K. Pradhan, A.K. Meikap, Structural and electrical characterizations of hydrothermally grown hydroxyapatite polycrystals: a morphological hierarchy. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5096452

    Article  Google Scholar 

  18. G. Graziani, M. Boi, M. Bianchi, A review on ionic substitutions in hydroxyapatite thin films: towards complete biomimetism. Coatings (2018). https://doi.org/10.3390/coatings8080269

    Article  Google Scholar 

  19. M. Hidouri, S.V. Dorozhkin, N. Albeladi, Thermal behavior, sintering and mechanical characterization of multiple ion-substituted hydroxyapatite bioceramics. J. Inorg. Organomet. Polym. Mater. 29, 87–100 (2019). https://doi.org/10.1007/s10904-018-0969-6

    Article  CAS  Google Scholar 

  20. M. Qadir, Y. Li, C. Wen, Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: a review. Acta Biomater. 89, 14–32 (2019). https://doi.org/10.1016/j.actbio.2019.03.006

    Article  CAS  Google Scholar 

  21. F.E. Bastan, G. Erdogan, F. Ustel, Role of strontium substitution in spray drying of hydroxyapatite: a comparative study on physical properties. Int. J. Appl. Ceram. Technol. 17, 1155–1166 (2020). https://doi.org/10.1111/ijac.13422

    Article  CAS  Google Scholar 

  22. Q.U. Ain, H. Zhang, M. Yaseen, U. Rasheed, K. Liu, S. Subhan, Z. Tong, Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(II), Cd(II), and crystal violet from aqueous solution. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.119088

    Article  Google Scholar 

  23. S.K. Hubadillah, M.H.D. Othman, Z.S. Tai, M.R. Jamalludin, N.K. Yusuf, A. Ahmad, M.A. Rahman, J. Jaafar, S.H.S.A. Kadir, Z. Harun, Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122396

    Article  Google Scholar 

  24. G. Chen, R. Shan, J. Shi, C. Liu, B. Yan, Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Convers. Manag. 98, 463–469 (2015). https://doi.org/10.1016/j.enconman.2015.04.012

    Article  CAS  Google Scholar 

  25. Y. Essamlali, O. Amadine, M. Larzek, C. Len, M. Zahouily, Sodium modified hydroxyapatite: highly efficient and stable solid-base catalyst for biodiesel production. Energy Convers. Manag. 149, 355–367 (2017). https://doi.org/10.1016/j.enconman.2017.07.028

    Article  CAS  Google Scholar 

  26. J. Gupta, M. Agarwal, A.K. Dalai, Marble slurry derived hydroxyapatite as heterogeneous catalyst for biodiesel production from soybean oil. Can. J. Chem. Eng. 96, 1873–1880 (2018). https://doi.org/10.1002/cjce.23167

    Article  CAS  Google Scholar 

  27. D. Chlala, J.-M. Giraudon, M. Labaki, J.-F. Lamonier, Formaldehyde total oxidation on manganese-doped hydroxyapatite: the effect of Mn content. Catalysts 10, 1–21 (2020). https://doi.org/10.3390/catal10121422

    Article  CAS  Google Scholar 

  28. R.K. More, N.R. Lavande, P.M. More, Mn supported on Ce substituted hydroxyapatite for VOC oxidation: catalytic activity and calcination effect. Catal. Letters. 150, 419–428 (2020). https://doi.org/10.1007/s10562-019-03091-0

    Article  CAS  Google Scholar 

  29. K. Yaemsunthorn, C. Randorn, Hydrogen production using economical and environmental friendly nanoparticulate hydroxyapatite and its ion doping. Int. J. Hydrogen Energy. 42, 5056–5062 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.058

    Article  CAS  Google Scholar 

  30. J.J. Malpica-Maldonado, J.A. Melo-Banda, A.L. Martínez-Salazar, M. Garcia-Hernández, N.P. Díaz, M.A. Meraz, Synthesis and characterization of Ni-Mo2C particles supported over hydroxyapatite for potential application as a catalyst for hydrogen production. Int. J. Hydrogen Energy. (2019). https://doi.org/10.1016/j.ijhydene.2018.08.152

    Article  Google Scholar 

  31. H. Shao, J. He, T. Lin, Z. Zhang, Y. Zhang, S. Liu, 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram. Int. 45, 1163–1170 (2019). https://doi.org/10.1016/j.ceramint.2018.09.300

    Article  CAS  Google Scholar 

  32. F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht, M.S. Asl, H. Karimi-Maleh, H.W. Jang, M. Shokouhimehr, R.S. Varma, Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (2021). https://doi.org/10.1016/j.mseb.2020.114950

    Article  Google Scholar 

  33. B. Priyadarshini, U. Anjaneyulu, U. Vijayalakshmi, Preparation and characterization of sol-gel derived Ce4+ doped hydroxyapatite and its in vitro biological evaluations for orthopedic applications. Mater. Des. 119, 446–455 (2017). https://doi.org/10.1016/j.matdes.2017.01.095

    Article  CAS  Google Scholar 

  34. A. Pandey, S. Midha, R.K. Sharma, R. Maurya, V.K. Nigam, S. Ghosh, K. Balani, Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Mater. Sci. Eng. C. 88, 13–24 (2018). https://doi.org/10.1016/j.msec.2018.02.014

    Article  CAS  Google Scholar 

  35. E.G. Rodrigues, T.C. Keller, S. Mitchell, J. Pérez-Ramírez, Hydroxyapatite, an exceptional catalyst for the gas-phase deoxygenation of bio-oil by aldol condensation. Green Chem. 16, 4870–4874 (2014). https://doi.org/10.1039/c4gc01432d

    Article  CAS  Google Scholar 

  36. H.A. Batista, F.N. Silva, H.M. Lisboa, A.C.F.M. Costa, Modeling and optimization of combustion synthesis for hydroxyapatite production. Ceram. Int. 46, 11638–11646 (2020). https://doi.org/10.1016/j.ceramint.2020.01.194

    Article  CAS  Google Scholar 

  37. H.R. Javadinejad, R. Ebrahimi-Kahrizsangi, Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. Int. J. Chem. Kinet. 53, 583–595 (2021). https://doi.org/10.1002/kin.21467

    Article  CAS  Google Scholar 

  38. N.V. Bulina, M.V. Chaikina, I.Y. Prosanov, D.V. Dudina, Strontium and silicate co-substituted hydroxyapatite: mechanochemical synthesis and structural characterization. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (2020). https://doi.org/10.1016/j.mseb.2020.114719

    Article  Google Scholar 

  39. S. Tautkus, K. Ishikawa, R. Ramanauskas, A. Kareiva, Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J. Solid State Chem. (2020). https://doi.org/10.1016/j.jssc.2020.121202

    Article  Google Scholar 

  40. I.-H. Lee, J.-A. Lee, J.-H. Lee, Y.-W. Heo, J.-J. Kim, Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation. J. Korean Ceram. Soc. 57, 56–64 (2020). https://doi.org/10.1007/s43207-019-00004-0

    Article  CAS  Google Scholar 

  41. S.H. Daryan, A. Khavandi, J. Javadpour, Surface engineered hollow hydroxyapatite microspheres: hydrothermal synthesis and growth mechanisms. Solid State Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106301

    Article  Google Scholar 

  42. T.-T. Li, L. Ling, M.-C. Lin, H.-K. Peng, H.-T. Ren, C.-W. Lou, J.-H. Lin, Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J. Mater. Sci. 55, 6352–6374 (2020). https://doi.org/10.1007/s10853-020-04467-z

    Article  CAS  Google Scholar 

  43. A. Huang, H. Dai, X. Wu, Z. Zhao, Y. Wu, Synthesis and characterization of mesoporous hydroxyapatite powder by microemulsion technique. J. Mater. Res. Technol. 8, 3158–3166 (2019). https://doi.org/10.1016/j.jmrt.2019.02.025

    Article  CAS  Google Scholar 

  44. A.A. Vu, S.F. Robertson, D. Ke, A. Bandyopadhyay, S. Bose, Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomater. 92, 325–335 (2019). https://doi.org/10.1016/j.actbio.2019.05.020

    Article  CAS  Google Scholar 

  45. H. Nosrati, R. Sarraf-Mamoory, D.Q.S. Le, M.C. Perez, C.E. Bünger, Evaluation of argon-gas-injected solvothermal synthesis of hydroxyapatite crystals followed by high-frequency induction heat sintering. Cryst. Growth Des. 20, 3182–3189 (2020). https://doi.org/10.1021/acs.cgd.0c00048

    Article  CAS  Google Scholar 

  46. T. Sebastian, T.R. Preisker, L. Gorjan, T. Graule, C.G. Aneziris, F.J. Clemens, Synthesis of hydroxyapatite fibers using electrospinning: A study of phase evolution based on polymer matrix. J. Eur. Ceram. Soc. 40, 2489–2496 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.070

    Article  CAS  Google Scholar 

  47. M. Quilitz, K. Steingröver, M. Veith, Effect of the Ca/P ratio on the dielectric properties of nanoscaled substoichiometric hydroxyapatite. J. Mater. Sci. Mater. Med. 21, 399–405 (2010). https://doi.org/10.1007/s10856-009-3875-1

    Article  CAS  Google Scholar 

  48. R. Sankannavar, S. Chaudhari, An imperative approach for fluorosis mitigation: amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation. J. Environ. Manag. 245, 230–237 (2019). https://doi.org/10.1016/j.jenvman.2019.05.088

    Article  CAS  Google Scholar 

  49. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  50. Bruker AXS (2017) TOPAS V6: "General profile and structure analysis software for powder diffraction data"-User's Manual, Bruker AXS, Karlsruche, German

  51. R.W. Cheary, A. Coelho, A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109–121 (1992). https://doi.org/10.1107/S0021889891010804

    Article  CAS  Google Scholar 

  52. R.W. Cheary, A.A. Coelho, Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Crystallogr. 31, 851–861 (1998). https://doi.org/10.1107/S0021889898006876

    Article  CAS  Google Scholar 

  53. R.W. Cheary, A.A. Coelho, Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. J. Appl. Crystallogr. 31, 862–868 (1998). https://doi.org/10.1107/S0021889898006888

    Article  CAS  Google Scholar 

  54. D. Balzar, Voigt-function model in diffraction line-broadening analysis. Int. Union Crystallogr. Monogr. Crystallogr. 10, 94–126 (1999)

    CAS  Google Scholar 

  55. E. Garskaite, L. Alinauskas, M. Drienovsky, J. Krajcovic, R. Cicka, M. Palcut, L. Jonusauskas, M. Malinauskas, Z. Stankeviciute, A. Kareiva, Fabrication of a composite of nanocrystalline carbonated hydroxyapatite (cHAP) with polylactic acid (PLA) and its surface topographical structuring with direct laser writing (DLW). RSC Adv. 6, 72733–72743 (2016). https://doi.org/10.1039/c6ra11679e

    Article  CAS  Google Scholar 

  56. M.S. Alhammad, Nanostructure hydroxyapatite based ceramics by sol gel method. J. Alloys Compd. 661, 251–256 (2016). https://doi.org/10.1016/j.jallcom.2015.11.045

    Article  CAS  Google Scholar 

  57. V. Dhand, K.Y. Rhee, S.-J. Park, The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Mater. Sci. Eng. C. 36, 152–159 (2014). https://doi.org/10.1016/j.msec.2013.11.049

    Article  CAS  Google Scholar 

  58. C. Boucetta, M. Kacimi, A. Ensuque, J.-Y. Piquemal, F. Bozon-Verduraz, M. Ziyad, Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite. Appl. Catal. A Gen. 356, 201–210 (2009). https://doi.org/10.1016/j.apcata.2009.01.005

    Article  CAS  Google Scholar 

  59. H. Tanaka, A. Ohnishi, Synthesis of Ti(IV)-substituted calcium hydroxyapatite microparticles by hydrolysis of phenyl phosphates. Adv. Powder Technol. 24, 1028–1033 (2013). https://doi.org/10.1016/j.apt.2013.02.012

    Article  CAS  Google Scholar 

  60. C. Piccirillo, C.W. Dunnill, R.C. Pullar, D.M. Tobaldi, J.A. Labrincha, I.P. Parkin, M.M. Pintado, P.M.L. Castro, Calcium phosphate-based materials of natural origin showing photocatalytic activity. J. Mater. Chem. A. 1, 6452–6461 (2013). https://doi.org/10.1039/c3ta10673j

    Article  CAS  Google Scholar 

  61. H. Nishikawa, Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics. Mater. Lett. 50, 364–370 (2001). https://doi.org/10.1016/S0167-577X(01)00318-4

    Article  CAS  Google Scholar 

  62. V.S. Bystrov, C. Piccirillo, D.M. Tobaldi, P.M.L. Castro, J. Coutinho, S. Kopyl, R.C. Pullar, Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data. Appl. Catal. B Environ. 196, 100–107 (2016). https://doi.org/10.1016/j.apcatb.2016.05.014

    Article  CAS  Google Scholar 

  63. C. Piccirillo, R.C. Pullar, E. Costa, A. Santos-Silva, M.M.E. Pintado, P.M.L. Castro, Hydroxyapatite-based materials of marine origin: a bioactivity and sintering study. Mater. Sci. Eng. C. 51, 309–315 (2015). https://doi.org/10.1016/j.msec.2015.03.020

    Article  CAS  Google Scholar 

  64. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  65. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  66. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, 2012)

    Google Scholar 

  67. J.I. Pankove, Optical processes in semiconductors (Courier Corporation, 1975)

    Google Scholar 

  68. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  69. A. Slepko, A.A. Demkov, First-principles study of the biomineral hydroxyapatite. Phys. Rev. B Condens. Matter. Mater. Phys. (2011). https://doi.org/10.1103/PhysRevB.84.134108

    Article  Google Scholar 

  70. P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  71. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61, 1–7 (2012). https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  72. V. Bystrov, E. Paramonova, L. Avakyan, J. Coutinho, N. Bulina, Simulation and computer study of structures and physical properties of hydroxyapatite with various defects. Nanomaterials (2021). https://doi.org/10.3390/nano11102752

    Article  Google Scholar 

  73. P.W. Brown, R.I. Martin, An analysis of hydroxyapatite surface layer formation. J. Phys. Chem. B. 103, 1671–1675 (1999). https://doi.org/10.1021/jp982554i

    Article  CAS  Google Scholar 

  74. Z. Chen, Y. Liu, L. Mao, L. Gong, W. Sun, L. Feng, Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.12.191

    Article  Google Scholar 

  75. R.J. Hill, C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 20, 467–474 (1987). https://doi.org/10.1107/S0021889887086199

    Article  CAS  Google Scholar 

  76. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999). https://doi.org/10.1107/S0021889898009856

    Article  CAS  Google Scholar 

  77. B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006). https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  78. A.R. Stokes, A.J.C. Wilson, A method of calculating the integral breadths of Debye-Scherrer lines. Math. Proc. Cambridge Philos. Soc. 38, 313–322 (1942). https://doi.org/10.1017/S0305004100021988

    Article  CAS  Google Scholar 

  79. K.A. Gross, V. Gross, C.C. Berndt, Thermal analysis of amorphous phases in hydroxyapatite coatings. J. Am. Ceram. Soc. 81, 106–112 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02301.x

    Article  CAS  Google Scholar 

  80. J.P. Gittings, C.R. Bowen, A.C.E. Dent, I.G. Turner, F.R. Baxter, J.B. Chaudhuri, Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater. 5, 743–754 (2009). https://doi.org/10.1016/j.actbio.2008.08.012

    Article  CAS  Google Scholar 

  81. C. Kjølseth, H. Fjeld, Ø. Prytz, P.I. Dahl, C. Estournès, R. Haugsrud, T. Norby, Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 – δ. Solid State Ionics (2010). https://doi.org/10.1016/j.ssi.2010.01.014

    Article  Google Scholar 

  82. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Centre for Advanced Materials Technology of RIT Bangalore for the necessary characterization facilities used in this study. A portion of this research (FESEM-EDX) was performed using facilities at CeNSE, Indian Institute of Science, Bengaluru, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India, MHRD and DST Nano Mission through NNetRA.

Author information

Authors and Affiliations

Authors

Contributions

SJK conceptualization, validation, formal analysis, investigation, data curation, writing-original draft, writing-reviewing and editing, visualization. RS conceptualization, methodology, validation, resources, visualization; GMM resources, formal analysis.

Corresponding author

Correspondence to Shreyas J. Kashyap.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, S.J., Sankannavar, R. & Madhu, G.M. Hydroxyapatite nanoparticles synthesized with a wide range of Ca/P molar ratios and their structural, optical, and dielectric characterization. J. Korean Ceram. Soc. 59, 846–858 (2022). https://doi.org/10.1007/s43207-022-00225-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00225-w

Keywords

Navigation