Abstract
Hydroxyapatite (HAp) nanomaterials have been synthesized via wet-chemical precipitation route with Ca/P molar ratios of 1.40, 1.60, 1.67, 1.80 and 2.00. These samples have been characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRPD), Rietveld refinement and dielectric spectroscopy. Micrographs from SEM showed that the calcined HAp particles were spherical in shape and they were highly agglomerated. The chemical composition derived from EDX was in good accordance with the theoretical Ca/P ratio. FT-IR spectroscopy revealed the characteristic functional groups: PO43− and OH−. Certain peaks were observed in the diffuse reflectance spectrum which is argued to originate from O2− → Ca2+ and O2− → P5+ charge transfer transitions. Phase analysis showed the existence of single pure HAp (\(\mathrm{P}{6}_{3}/\mathrm{m}\)) only for samples with Ca/P = 1.6 and 1.67. However, HAp with Ca/P = 1.4 had tricalcium phosphate (TCP, Ca3(PO4)2) as the secondary phase, while Ca/P = 1.8 and 2.0 had CaCO3 as the secondary phase. Thermograms displayed multiple steps indicating the degradation of secondary phases at higher temperatures. Further, XRD analysis of post-TGA samples revealed that there was no change in the space group symmetry; however, the phase identified was Ca5(PO4)3(CO3)0.01(OH)1.3. The dielectric constant (\({\varepsilon }^{^{\prime}}\)) and dielectric loss (\(\mathrm{tan}\delta\)) decline with enhancing frequency corresponding well with space-charge and ionic-type polarization behaviour. The ac electrical conductivity enhanced with increasing frequency obeying the Jonscher universal power law.
Similar content being viewed by others
References
L. Zaccaria, S.J. Tharakan, S. Altermatt, Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience. Child’s Nerv. Syst. 33, 343–348 (2017). https://doi.org/10.1007/s00381-016-3327-4
A. Jaafar, C. Hecker, P. Árki, Y. Joseph, Sol-gel derived hydroxyapatite coatings for titanium implants: a review. Bioengineering 7, 1–23 (2020). https://doi.org/10.3390/bioengineering7040127
D. Arcos, M. Vallet-Regí, Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B. 8, 1781–1800 (2020). https://doi.org/10.1039/c9tb02710f
P. Feng, S. Peng, C. Shuai, C. Gao, W. Yang, S. Bin, A. Min, In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity. ACS Appl. Mater. Interfaces. 12, 46743–46755 (2020). https://doi.org/10.1021/acsami.0c13768
G. Montalbano, G. Molino, S. Fiorilli, C. Vitale-Brovarone, Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: a hybrid formulation for 3D printing of bone scaffolds. J. Eur. Ceram. Soc. 40, 3689–3697 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.018
H. Huang, M. Du, J. Chen, S. Zhong, J. Wang, Preparation and characterization of abalone shells derived biological mesoporous hydroxyapatite microspheres for drug delivery. Mater. Sci. Eng. C. (2020). https://doi.org/10.1016/j.msec.2020.110969
S. Lee, T. Miyajima, A. Sugawara-Narutaki, K. Kato, F. Nagata, Development of paclitaxel-loaded poly(lactic acid)/hydroxyapatite core-shell nanoparticles as a stimuli-responsive drug delivery system. R. Soc. Open Sci. (2021). https://doi.org/10.1098/rsos.202030
Y. Liu, Y. Tang, J. Wu, J. Sun, X. Liao, Z. Teng, G. Lu, Facile synthesis of biodegradable flower-like hydroxyapatite for drug and gene delivery. J. Colloid Interface Sci. 570, 402–410 (2020). https://doi.org/10.1016/j.jcis.2020.03.010
A. Fihri, C. Len, R.S. Varma, A. Solhy, Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48–76 (2017). https://doi.org/10.1016/j.ccr.2017.06.009
G. Bharath, K. Rambabu, A. Hai, H. Taher, F. Banat, Development of Au and 1D hydroxyapatite nanohybrids supported on 2D boron nitride sheets as highly efficient catalysts for dehydrogenating glycerol to lactic acid. ACS Sustain. Chem. Eng. 8, 7278–7289 (2020). https://doi.org/10.1021/acssuschemeng.9b06997
H. Martínez-Hernández, J.A. Mendoza-Nieto, H. Pfeiffer, J. Ortiz-Landeros, L. Téllez-Jurado, Development of novel nano-hydroxyapatite doped with silver as effective catalysts for carbon monoxide oxidation. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125992
J. Guo, P.N. Duchesne, L. Wang, R. Song, M. Xia, U. Ulmer, W. Sun, Y. Dong, J.Y.Y. Loh, N.P. Kherani, J. Du, B. Zhu, W. Huang, S. Zhang, G.A. Ozin, High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction. ACS Catal. 10, 13668–13681 (2020). https://doi.org/10.1021/acscatal.0c03806
A. Haider, S. Haider, S.S. Han, I.-K. Kang, Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv. 7, 7442–7458 (2017). https://doi.org/10.1039/c6ra26124h
A. Das, D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Mater. Sci. Eng. C. 101, 539–563 (2019). https://doi.org/10.1016/j.msec.2019.03.077
D.S. Gomes, A.M.C. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine. Ceramica. 65, 282–302 (2019). https://doi.org/10.1590/0366-69132019653742706
M. Ibrahim, M. Labaki, J.-M. Giraudon, J.-F. Lamonier, Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121139
T. Chatterjee, A.K. Das, S. Lala, S.K. Pradhan, A.K. Meikap, Structural and electrical characterizations of hydrothermally grown hydroxyapatite polycrystals: a morphological hierarchy. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5096452
G. Graziani, M. Boi, M. Bianchi, A review on ionic substitutions in hydroxyapatite thin films: towards complete biomimetism. Coatings (2018). https://doi.org/10.3390/coatings8080269
M. Hidouri, S.V. Dorozhkin, N. Albeladi, Thermal behavior, sintering and mechanical characterization of multiple ion-substituted hydroxyapatite bioceramics. J. Inorg. Organomet. Polym. Mater. 29, 87–100 (2019). https://doi.org/10.1007/s10904-018-0969-6
M. Qadir, Y. Li, C. Wen, Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: a review. Acta Biomater. 89, 14–32 (2019). https://doi.org/10.1016/j.actbio.2019.03.006
F.E. Bastan, G. Erdogan, F. Ustel, Role of strontium substitution in spray drying of hydroxyapatite: a comparative study on physical properties. Int. J. Appl. Ceram. Technol. 17, 1155–1166 (2020). https://doi.org/10.1111/ijac.13422
Q.U. Ain, H. Zhang, M. Yaseen, U. Rasheed, K. Liu, S. Subhan, Z. Tong, Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(II), Cd(II), and crystal violet from aqueous solution. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.119088
S.K. Hubadillah, M.H.D. Othman, Z.S. Tai, M.R. Jamalludin, N.K. Yusuf, A. Ahmad, M.A. Rahman, J. Jaafar, S.H.S.A. Kadir, Z. Harun, Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122396
G. Chen, R. Shan, J. Shi, C. Liu, B. Yan, Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Convers. Manag. 98, 463–469 (2015). https://doi.org/10.1016/j.enconman.2015.04.012
Y. Essamlali, O. Amadine, M. Larzek, C. Len, M. Zahouily, Sodium modified hydroxyapatite: highly efficient and stable solid-base catalyst for biodiesel production. Energy Convers. Manag. 149, 355–367 (2017). https://doi.org/10.1016/j.enconman.2017.07.028
J. Gupta, M. Agarwal, A.K. Dalai, Marble slurry derived hydroxyapatite as heterogeneous catalyst for biodiesel production from soybean oil. Can. J. Chem. Eng. 96, 1873–1880 (2018). https://doi.org/10.1002/cjce.23167
D. Chlala, J.-M. Giraudon, M. Labaki, J.-F. Lamonier, Formaldehyde total oxidation on manganese-doped hydroxyapatite: the effect of Mn content. Catalysts 10, 1–21 (2020). https://doi.org/10.3390/catal10121422
R.K. More, N.R. Lavande, P.M. More, Mn supported on Ce substituted hydroxyapatite for VOC oxidation: catalytic activity and calcination effect. Catal. Letters. 150, 419–428 (2020). https://doi.org/10.1007/s10562-019-03091-0
K. Yaemsunthorn, C. Randorn, Hydrogen production using economical and environmental friendly nanoparticulate hydroxyapatite and its ion doping. Int. J. Hydrogen Energy. 42, 5056–5062 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.058
J.J. Malpica-Maldonado, J.A. Melo-Banda, A.L. Martínez-Salazar, M. Garcia-Hernández, N.P. Díaz, M.A. Meraz, Synthesis and characterization of Ni-Mo2C particles supported over hydroxyapatite for potential application as a catalyst for hydrogen production. Int. J. Hydrogen Energy. (2019). https://doi.org/10.1016/j.ijhydene.2018.08.152
H. Shao, J. He, T. Lin, Z. Zhang, Y. Zhang, S. Liu, 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram. Int. 45, 1163–1170 (2019). https://doi.org/10.1016/j.ceramint.2018.09.300
F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht, M.S. Asl, H. Karimi-Maleh, H.W. Jang, M. Shokouhimehr, R.S. Varma, Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (2021). https://doi.org/10.1016/j.mseb.2020.114950
B. Priyadarshini, U. Anjaneyulu, U. Vijayalakshmi, Preparation and characterization of sol-gel derived Ce4+ doped hydroxyapatite and its in vitro biological evaluations for orthopedic applications. Mater. Des. 119, 446–455 (2017). https://doi.org/10.1016/j.matdes.2017.01.095
A. Pandey, S. Midha, R.K. Sharma, R. Maurya, V.K. Nigam, S. Ghosh, K. Balani, Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Mater. Sci. Eng. C. 88, 13–24 (2018). https://doi.org/10.1016/j.msec.2018.02.014
E.G. Rodrigues, T.C. Keller, S. Mitchell, J. Pérez-Ramírez, Hydroxyapatite, an exceptional catalyst for the gas-phase deoxygenation of bio-oil by aldol condensation. Green Chem. 16, 4870–4874 (2014). https://doi.org/10.1039/c4gc01432d
H.A. Batista, F.N. Silva, H.M. Lisboa, A.C.F.M. Costa, Modeling and optimization of combustion synthesis for hydroxyapatite production. Ceram. Int. 46, 11638–11646 (2020). https://doi.org/10.1016/j.ceramint.2020.01.194
H.R. Javadinejad, R. Ebrahimi-Kahrizsangi, Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. Int. J. Chem. Kinet. 53, 583–595 (2021). https://doi.org/10.1002/kin.21467
N.V. Bulina, M.V. Chaikina, I.Y. Prosanov, D.V. Dudina, Strontium and silicate co-substituted hydroxyapatite: mechanochemical synthesis and structural characterization. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (2020). https://doi.org/10.1016/j.mseb.2020.114719
S. Tautkus, K. Ishikawa, R. Ramanauskas, A. Kareiva, Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J. Solid State Chem. (2020). https://doi.org/10.1016/j.jssc.2020.121202
I.-H. Lee, J.-A. Lee, J.-H. Lee, Y.-W. Heo, J.-J. Kim, Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation. J. Korean Ceram. Soc. 57, 56–64 (2020). https://doi.org/10.1007/s43207-019-00004-0
S.H. Daryan, A. Khavandi, J. Javadpour, Surface engineered hollow hydroxyapatite microspheres: hydrothermal synthesis and growth mechanisms. Solid State Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106301
T.-T. Li, L. Ling, M.-C. Lin, H.-K. Peng, H.-T. Ren, C.-W. Lou, J.-H. Lin, Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J. Mater. Sci. 55, 6352–6374 (2020). https://doi.org/10.1007/s10853-020-04467-z
A. Huang, H. Dai, X. Wu, Z. Zhao, Y. Wu, Synthesis and characterization of mesoporous hydroxyapatite powder by microemulsion technique. J. Mater. Res. Technol. 8, 3158–3166 (2019). https://doi.org/10.1016/j.jmrt.2019.02.025
A.A. Vu, S.F. Robertson, D. Ke, A. Bandyopadhyay, S. Bose, Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomater. 92, 325–335 (2019). https://doi.org/10.1016/j.actbio.2019.05.020
H. Nosrati, R. Sarraf-Mamoory, D.Q.S. Le, M.C. Perez, C.E. Bünger, Evaluation of argon-gas-injected solvothermal synthesis of hydroxyapatite crystals followed by high-frequency induction heat sintering. Cryst. Growth Des. 20, 3182–3189 (2020). https://doi.org/10.1021/acs.cgd.0c00048
T. Sebastian, T.R. Preisker, L. Gorjan, T. Graule, C.G. Aneziris, F.J. Clemens, Synthesis of hydroxyapatite fibers using electrospinning: A study of phase evolution based on polymer matrix. J. Eur. Ceram. Soc. 40, 2489–2496 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.070
M. Quilitz, K. Steingröver, M. Veith, Effect of the Ca/P ratio on the dielectric properties of nanoscaled substoichiometric hydroxyapatite. J. Mater. Sci. Mater. Med. 21, 399–405 (2010). https://doi.org/10.1007/s10856-009-3875-1
R. Sankannavar, S. Chaudhari, An imperative approach for fluorosis mitigation: amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation. J. Environ. Manag. 245, 230–237 (2019). https://doi.org/10.1016/j.jenvman.2019.05.088
H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558
Bruker AXS (2017) TOPAS V6: "General profile and structure analysis software for powder diffraction data"-User's Manual, Bruker AXS, Karlsruche, German
R.W. Cheary, A. Coelho, A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109–121 (1992). https://doi.org/10.1107/S0021889891010804
R.W. Cheary, A.A. Coelho, Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Crystallogr. 31, 851–861 (1998). https://doi.org/10.1107/S0021889898006876
R.W. Cheary, A.A. Coelho, Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. J. Appl. Crystallogr. 31, 862–868 (1998). https://doi.org/10.1107/S0021889898006888
D. Balzar, Voigt-function model in diffraction line-broadening analysis. Int. Union Crystallogr. Monogr. Crystallogr. 10, 94–126 (1999)
E. Garskaite, L. Alinauskas, M. Drienovsky, J. Krajcovic, R. Cicka, M. Palcut, L. Jonusauskas, M. Malinauskas, Z. Stankeviciute, A. Kareiva, Fabrication of a composite of nanocrystalline carbonated hydroxyapatite (cHAP) with polylactic acid (PLA) and its surface topographical structuring with direct laser writing (DLW). RSC Adv. 6, 72733–72743 (2016). https://doi.org/10.1039/c6ra11679e
M.S. Alhammad, Nanostructure hydroxyapatite based ceramics by sol gel method. J. Alloys Compd. 661, 251–256 (2016). https://doi.org/10.1016/j.jallcom.2015.11.045
V. Dhand, K.Y. Rhee, S.-J. Park, The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Mater. Sci. Eng. C. 36, 152–159 (2014). https://doi.org/10.1016/j.msec.2013.11.049
C. Boucetta, M. Kacimi, A. Ensuque, J.-Y. Piquemal, F. Bozon-Verduraz, M. Ziyad, Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite. Appl. Catal. A Gen. 356, 201–210 (2009). https://doi.org/10.1016/j.apcata.2009.01.005
H. Tanaka, A. Ohnishi, Synthesis of Ti(IV)-substituted calcium hydroxyapatite microparticles by hydrolysis of phenyl phosphates. Adv. Powder Technol. 24, 1028–1033 (2013). https://doi.org/10.1016/j.apt.2013.02.012
C. Piccirillo, C.W. Dunnill, R.C. Pullar, D.M. Tobaldi, J.A. Labrincha, I.P. Parkin, M.M. Pintado, P.M.L. Castro, Calcium phosphate-based materials of natural origin showing photocatalytic activity. J. Mater. Chem. A. 1, 6452–6461 (2013). https://doi.org/10.1039/c3ta10673j
H. Nishikawa, Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics. Mater. Lett. 50, 364–370 (2001). https://doi.org/10.1016/S0167-577X(01)00318-4
V.S. Bystrov, C. Piccirillo, D.M. Tobaldi, P.M.L. Castro, J. Coutinho, S. Kopyl, R.C. Pullar, Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data. Appl. Catal. B Environ. 196, 100–107 (2016). https://doi.org/10.1016/j.apcatb.2016.05.014
C. Piccirillo, R.C. Pullar, E. Costa, A. Santos-Silva, M.M.E. Pintado, P.M.L. Castro, Hydroxyapatite-based materials of marine origin: a bioactivity and sintering study. Mater. Sci. Eng. C. 51, 309–315 (2015). https://doi.org/10.1016/j.msec.2015.03.020
J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224
E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061
N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, 2012)
J.I. Pankove, Optical processes in semiconductors (Courier Corporation, 1975)
P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892
A. Slepko, A.A. Demkov, First-principles study of the biomineral hydroxyapatite. Phys. Rev. B Condens. Matter. Mater. Phys. (2011). https://doi.org/10.1103/PhysRevB.84.134108
P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)
R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61, 1–7 (2012). https://doi.org/10.1007/s10971-011-2582-9
V. Bystrov, E. Paramonova, L. Avakyan, J. Coutinho, N. Bulina, Simulation and computer study of structures and physical properties of hydroxyapatite with various defects. Nanomaterials (2021). https://doi.org/10.3390/nano11102752
P.W. Brown, R.I. Martin, An analysis of hydroxyapatite surface layer formation. J. Phys. Chem. B. 103, 1671–1675 (1999). https://doi.org/10.1021/jp982554i
Z. Chen, Y. Liu, L. Mao, L. Gong, W. Sun, L. Feng, Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.12.191
R.J. Hill, C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 20, 467–474 (1987). https://doi.org/10.1107/S0021889887086199
L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999). https://doi.org/10.1107/S0021889898009856
B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006). https://doi.org/10.1154/1.2179804
A.R. Stokes, A.J.C. Wilson, A method of calculating the integral breadths of Debye-Scherrer lines. Math. Proc. Cambridge Philos. Soc. 38, 313–322 (1942). https://doi.org/10.1017/S0305004100021988
K.A. Gross, V. Gross, C.C. Berndt, Thermal analysis of amorphous phases in hydroxyapatite coatings. J. Am. Ceram. Soc. 81, 106–112 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02301.x
J.P. Gittings, C.R. Bowen, A.C.E. Dent, I.G. Turner, F.R. Baxter, J.B. Chaudhuri, Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater. 5, 743–754 (2009). https://doi.org/10.1016/j.actbio.2008.08.012
C. Kjølseth, H. Fjeld, Ø. Prytz, P.I. Dahl, C. Estournès, R. Haugsrud, T. Norby, Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 – δ. Solid State Ionics (2010). https://doi.org/10.1016/j.ssi.2010.01.014
A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0
Acknowledgements
The authors acknowledge the Centre for Advanced Materials Technology of RIT Bangalore for the necessary characterization facilities used in this study. A portion of this research (FESEM-EDX) was performed using facilities at CeNSE, Indian Institute of Science, Bengaluru, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India, MHRD and DST Nano Mission through NNetRA.
Author information
Authors and Affiliations
Contributions
SJK conceptualization, validation, formal analysis, investigation, data curation, writing-original draft, writing-reviewing and editing, visualization. RS conceptualization, methodology, validation, resources, visualization; GMM resources, formal analysis.
Corresponding author
Ethics declarations
Conflict of interest
None.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kashyap, S.J., Sankannavar, R. & Madhu, G.M. Hydroxyapatite nanoparticles synthesized with a wide range of Ca/P molar ratios and their structural, optical, and dielectric characterization. J. Korean Ceram. Soc. 59, 846–858 (2022). https://doi.org/10.1007/s43207-022-00225-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43207-022-00225-w