Skip to main content

Advertisement

Log in

Structural, electrical, magnetic and narrow band gap-correlated optical characteristics of multiferroic [Pb(Fe0.5Nb0.5)O3]0.5−[(Ba0.8Sr0.2)TiO3]0.5

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The research article reports the various functional properties of barium strontium titanate [(Ba0.8Sr0.2)TiO3]-modified lead iron niobate [Pb(Fe0.5Nb0.5)O3] ceramic oxide synthesized by the solid-state method. Rietveld and POWD studies proved that the composition crystallizes in tetragonal structure as the primary phase. Ti–O perovskite vibrations were studied by Fourier transform infrared (FTIR) analysis. The TiO6 octahedral stretching, O–Ti–O vibrations and Nb–O–Fe stretching vibrations of PFN were studied by Raman spectroscopy. The broadening of Raman modes was analysed in the framework of Heisenberg’s uncertainty principle using phonon confinement model. Field emission gun-scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS) studies revealed the dense grain distributions, grain growth and purity. UV–visible analysis was done to study the narrow band gap and Urbach energy. The effect of structural distortions and electronegativity on band gap were analysed. The photocatalytic response was studied by estimating the band edge levels using Mulliken’s model. The evaluated conduction band minimum level is sufficiently negative with respect to the H+/H2 (0 eV) level, which strongly signifies the possible occurrence of the photocatalytic hydrogen emission reaction. A detailed electrical analysis was done to study the dielectric properties, relaxation, negative temperature coefficient of resistance (NTCR)-type response and DC conductivity. AC conductivity studies revealed the presence of overlapping large polaron tunnelling (OLPT) model. The effect of oxygen vacancies on relaxation and its correlation with activation energy were discussed. Multiferroic nature was confirmed from room temperature studies of P–E and M–H hysteresis loops. Fe3+ ↔ Fe3+ (F centre) exchange and Fe3+ ↔ Fe2+ double exchange mechanisms were discussed. A magnetic improvement was noticed on reduction of temperature to 50 K. The simultaneous existence of weak ferroelectricity and ferromagnetism is one of the interesting outcomes of the present study, which may provide a new multiferroic material for advanced electro-optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L. Yu, H. Deng, W. Zhou, H. Cao, X. Zhai, P. Yang, J. Chu, Influence of B site-cations on phase transition, magnetic switching and band-gap modulation in Pb(B’0.5B”0.5)O3–Pb(Zr0.53Ti0.47)O3 ceramics. Ceram. Int. 43, 2372–2378 (2017)

    CAS  Google Scholar 

  2. N.S. Almodovar, R. Font, O. Raymond, J.M. Siqueiros, Phase formation and characterization of [Fe, Mg]NbO4 as a new precursor for the PMN–PFN system. J. Mater. Sci. 37, 5089–5093 (2002)

    CAS  Google Scholar 

  3. S.P. Singh, A.K. Singh, D. Pandey, Crystallographic phases, phase transitions, and barrier layer formation in (1–x) [Pb(Fe1/2Nb1/2)O3]–xPbTiO3. J. Mater. Res. 18, 11 (2003)

    Google Scholar 

  4. M. Yokosuka, Electrical and electrochemical properties of of hot-pressed Pb(Fe1/2Nb1/2)O3 ferroelectric ceramics. Jpn J. Appl. Phys. 32, 1142 (1993)

    CAS  Google Scholar 

  5. V.A. Bokov, L.E. Mylnikova, G.A. Smolenskii, Ferroelectric antiferromagnetics. Sov. Phys. JETP 15(2), 447 (1962)

    Google Scholar 

  6. M.H. Lee, W.K. Choo, A phase analysis in pseudo binary Pb(Fe1/2Nb1/2)O3-Pb(Mg1/2W1/2)O3 solid solution. J. Appl. Phys. 52, 5767 (1981)

    CAS  Google Scholar 

  7. X.S. Gao, X.Y. Chen, J. Yin, J. Wu, Z.G. Liu, M. Wang, Ferroelectric and dielectric properties of ferroelectromagnet Pb(Fe1/2Nb1/2)O3 ceramics and thin films. J. Mater. Sci. 35, 5421–5425 (2000)

    CAS  Google Scholar 

  8. B. Mallesham, R. Ranjith, M. Manivelraja, Scandium induced structural transformation and B’: B” cationic ordering in Pb(Fe0.5Nb0.5)O3 multiferroic ceramics. J. Appl. Phys. 116, 034104 (2014)

    Google Scholar 

  9. E.V. Ramana, M.P.F. Graça, M.A. Valente, Effect of rare-earth (La and Eu) doping on ferroelectric and magnetic properties of magnetoelectric Pb(Fe0.5Nb0.5)O3. Phys. Status Solidi A 211, 2094–2097 (2014)

    Google Scholar 

  10. S.P. Singh, D. Pandeya, S. Yoon, S. Barik, N. Shin, Evidence for monoclinic crystal structure and negative thermal expansion below magnetic transition temperature in Pb (Fe1/2Nb1/2) O3. Appl. Phys. Lett. 90, 242915 (2007)

    Google Scholar 

  11. P.K. Sharma, V.V. Varadan, V.K. Varadan, Porous behaviour of dielectric properties of barium strontium titanate synthesized by sol-gel method in the presence of triethanolamine. Chem. Mater. 12, 2590–2596 (2000)

    CAS  Google Scholar 

  12. L.P. Selvam, V. Kumar, Synthesis of nanopowders of (Ba1-x Srx) TiO3. Nater. Lett. 56, 1089–1092 (2002)

    Google Scholar 

  13. B. Wu, L. Zhang, X. Yao, Low temperature sintering of Bax Sr1-x TiO3 glass-ceramic. Ceram. Int. 30, 1557–1761 (2004)

    Google Scholar 

  14. X. Li, F. Qiu, K. Guo, B. Zou, J. Gu, J. WanG, B. Xu, Synthesis and humidity sensitive properties of nanocrystaline Ba1-x Srx TiO3 thick films. Mater. Chem. Phys. 50, 227–232 (1997)

    CAS  Google Scholar 

  15. K. Bethe, F. Welz, Preparation and properties of (Ba, Sr)TiO3 single crystals. Mater. Res. Bull. 6, 209–217 (1971)

    CAS  Google Scholar 

  16. O.P. Thakur, C. Prakash, D.K. Agrawal, Microwave synthesis and sintering of Ba0.95 Sr0.05 TiO3. Mater. Lett. 56, 970–973 (2002)

    CAS  Google Scholar 

  17. O.P. Thakur, C. Prakash, D.K. Agrawal, Dielectrics behaviour of Ba0.95 Sr0.05 TiO3 ceramics sintered by microwave. Mater. Sci. Eng. B. 96, 221–225 (2002)

    Google Scholar 

  18. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials (Wiley-Interscience, New York, 1974)

    Google Scholar 

  19. E.W. POWD, An interactive powder diffraction data interpretation and indexing Program, Version 2.1. School of Physical Science, Finders University of South Australia, Bedford Park

  20. D. Bochenek, P. Niemiec, Ferroelectromagnetic properties of PbFe1/2Nb1/2O3 (PFN) material synthesized by chemical-wet technology. Materials 11, 2504 (2018)

    CAS  Google Scholar 

  21. M.H. Lente, J.D.S. Guerra, G.K.S. de Souza, B.M. Fraygola, C.F.V. Raigoza, D. Garcia, J.A. Eiras, Nature of the magnetoelectric coupling in multiferroic Pb(Fe1/2Nb1/2)O3 ceramics. Phys. Rev. B 78, 054109 (2008)

    Google Scholar 

  22. D. Bochenek, Z. Surowiak, Influence of admixtures on the properties of biferroic Pb(Fe0.5Nb0.5)O3 ceramic. Phys. Status Solidi A 206, 2857–2865 (2009)

    CAS  Google Scholar 

  23. S. Maity, A. Sasmal, S. Sen, Comprehensive characterization of Ba1−xSrxTiO3: Correlation between structural and multifunctional properties. J. Alloys Compd. 884, 161072 (2021)

    CAS  Google Scholar 

  24. A. Chawla, S. Verma, I. Pushkarna, P.S. Malhi, A. Singh, P.D. Babu, M. Sing, Phase evolution and magnetoelectric coupling studies in multiferroic Fe doped BST solid solutions. App. Phys. A 127, 587 (2021)

    CAS  Google Scholar 

  25. A. Kaur, A. Singh, L. Singh, S.K. Mishra, P.D. Babu, K. Asokan, S. Kumar, C.L. Chen, K.S. Yang, D.H. Wei, Structural, magnetic and electronic properties of iron doped barium strontium titanate. RSC Adv. 6, 112363–112369 (2016)

    CAS  Google Scholar 

  26. D. Bochenek, P. Niemiec, Dielectric properties of the PFN ceramics obtained by different chemical-wet technology and sintering by hot pressing method. Matec. Conf. 242, 01002 (2018)

    CAS  Google Scholar 

  27. V. Purohit, R.N.P. Choudhary, Structural, dielectric and electrical properties of BiFeO3 and BaTiO3 modified Bi(Mg0.5Ti0.5)O3. Mat. Chem. Phys. 256, 123732 (2020)

    CAS  Google Scholar 

  28. N. Adhlakha, K.L. Yadav, Study of dielectric, magnetic and magnetoelectric behavior of (x)NZF-(1–x)PLSZT multiferroic composites. IEEE Trans. Dielectr. Electr. Insul. 21(5), 2055–2061 (2014)

    CAS  Google Scholar 

  29. G. Busca, V. Buscagia, M. Leoni, P. Nanni, Solid state and surface spectroscopy characterization of BaTiO3 fine powders. Chem. Mater. 6, 955–961 (1994)

    CAS  Google Scholar 

  30. L.J. Bellamy, The infra-red spectra of complex molecules (Methuen & Co Ltd., London, 1958)

    Google Scholar 

  31. E.A. Perianu, I.A. Gorodea, F. Gheorghiu, A.V. Sandu, A.C. Ianculescu, I. Sandu, A.R. Iordan, M.N. Palamaru, Preparation and dielectric spectroscopy characterization of A2MnMoO6 (A = Ca, Sr and Ba) double perovskites. Rev. Chim. (Bucharest) 62, 17 (2011)

    CAS  Google Scholar 

  32. B.N. Parida, P. Biswal, S. Behera, R.K. Parida, R. Padhee, Multifunctional behaviour of Ca-doped niobium-based double perovskite for photovoltaic/solar cell devices. J. Mater. Sci. Mater. Electron. 31, 6097–6108 (2020)

    CAS  Google Scholar 

  33. D.A. Sanchez, N. Ortega, A. Kumar, G. Sreenivasulu, R.S. Katiyar, J.F. Scott, D.M. Evans, M. Arredondo-Arechavala, A. Schilling, J.M. Gregg, Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr, Ti)(1–x)O3 [M = Ta, Nb]. J. Appl. Phys. 113, 074105 (2013)

    Google Scholar 

  34. Q. Zhang, J. Zhai, L. Kong, X. Yao, Investigation of ferroelectric phase transition for barium strontium titanate ceramics by in situ Raman scattering. J. Appl. Phys. 112, 124112 (2012)

    Google Scholar 

  35. P.S. Dobal, A. Dixit, R.S. Katiyar, D. Garcia, R. Guo, A.S. Bhalla, Micro-Raman study of Ba1−xSrxTiO3 ceramics. J. Raman Spectrosc. 32, 147–149 (2001)

    CAS  Google Scholar 

  36. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadic, O.M. Aldossary, Y.A. Douri, Improved room temperature dielectric properties of Gd3+ and Nb5+ co-doped barium titanate ceramics. J. Alloys Compd. 883, 160836 (2021)

    CAS  Google Scholar 

  37. Z. Song, Q. Xu, S. Zhang, H. Liu, W. Luo, H. Hao, M. Cao, Z. Yao, W. Hu, Y. Shi, M.T. Lanagan, The role of microstructure on microwave dielectric properties of (Ba, Sr)TiO3 ceramics. J. Am. Ceram. Soc. 99, 905–910 (2016)

    CAS  Google Scholar 

  38. T. Badapanda, S. Sarangi, B. Behera, P.K. Sahoo, S. Anwar, T.P. Sinha, G.E. Luz Jr., E. Longo, L.S. Cavalcante, Structural refinement, optical and ferroelectric properties of microcrystalline Ba(Zr0.05Ti0.95)O3 perovskite. Curr. Appl. Phys. 14, 708–715 (2014)

    Google Scholar 

  39. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, M.S. Li, Optical and dielectric relax or behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters. J. Phys. D Appl. Phys. 42, 175414 (2009)

    Google Scholar 

  40. T.F. Zhang, X.G. Tang, Q.X. Liu, S.G. Lu, Y.P. Jiang, X.X. Huang, Q.F. Zhou, Oxygen-vacancy-related relaxation and conduction behaviour in (Pb1-xBax) (Zr0.95Ti0.05)O3 ceramics. AIP Adv. 4, 107141 (2014)

    Google Scholar 

  41. J. Suchanicz, K. Konieczny, K. Świerczek, M. Lipiński, M. Karpierz, D. Sitko, H. Czternastek, K. Kluczewska, Electrical transport in low-lead (1–x)BaTiO3–x PbMg1/3Nb2/3O3 ceramics. J. Adv. Ceram. 6, 207–219 (2017)

    CAS  Google Scholar 

  42. A. Sagdeo, A. Nagwanshi, P. Pokhriyal, A.K. Sinha, P. Rajput, V. Mishra, P.R. Sagdeo, Disappearance of dielectric anomaly in spite of presence of structural phase transition in reduced BaTiO3: effect of defect states within the bandgap. J. Appl. Phys. 123, 161424 (2018)

    Google Scholar 

  43. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mexicana de Fisica Suppl. 53, 18–22 (2007)

    CAS  Google Scholar 

  44. R.K. Parida, D.K. Pattanayak, B. Mohanty, N.C. Nayak, B.N. Parida, Structural and optical properties of a revived Pb0:5Ba1:5BiVO6 perovskite oxide. J. Adv. Dielect. 9, 1950004 (2019)

    CAS  Google Scholar 

  45. A. Somvanshi, A. Ahmad, S. Husain, S. Manzoor, A.A.A. Qahtan, N. Zarrin, M. Fatema,·W. Khan, Structural modifications and enhanced ferroelectric nature of NdFeO3–PbTiO3 composites. Appl. Phys. A 127, 424 (2021)

    CAS  Google Scholar 

  46. B.N. Parida, N. Panda, R. Padhee, R.K. Parida, Ferroelectric and optical properties of ‘Ba-doped’ new double perovskites. Phase Transit. 91, 638–648 (2018)

    CAS  Google Scholar 

  47. B. Mohanty, B.N. Parida, R.K. Parida, Multiferroic and optical spectroscopic behaviour of BST in BFO environment. J. Mater. Sci. Mater. Electron. 30, 9211–9218 (2019)

    CAS  Google Scholar 

  48. Y. Lin, P. Yu, X. Zhao, Optical constants and dispersion behaviour of PbMg1/3Nb2/3O3 single crystals. Opt. Mater. 31, 1151–1154 (2009)

    CAS  Google Scholar 

  49. I. Boerasu, L. Pintilie, M. Pereira, M.I. Vasilevskiy, M.J.M. Gomes, Competition between ferroelectric and semiconductor properties in PbZr0.65Ti0.35O3 thin films deposited by sol–gel. J. Appl. Phys. 93, 4776 (2003)

    CAS  Google Scholar 

  50. S.K. Pandey, A.R. James, R. Raman, S.N. Chatterjee, A. Goyal, C. Prakash, T.C. Goel, Structural, ferroelectric and optical properties of PZT thin films. Phys. B 369, 135–142 (2005)

    CAS  Google Scholar 

  51. I. Sulania, J. Kaswan, V. Attatappa, R.K. Karn, D.C. Agarwal, D. Kanjilal, Investigations of electrical and optical properties of low energy ion irradiated α-Fe2O3 (hematite) thin films. AIP Conf. Proc. 1731, 120021 (2016)

    Google Scholar 

  52. V.M. Longo, A.T. de Figueiredo, S. de Lázaro, M.F. Gurgel, M.G.S. Costa, C.O. Paiva-Santos, J.A. Varela, E. Longo, V.R. Mastelaro, F.S. de Vicente, A.C. Hernandes, R.W.A. Franco, Structural conditions that leads to photoluminescence emission in SrTiO3: an experimental and theoretical approach. J. Appl. Phys. 104, 023515 (2008)

    Google Scholar 

  53. W. Zhou, H. Deng, L. Yu, P. Yang, J. Chu, Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin films. J. Appl. Phys. 117, 194102 (2015)

    Google Scholar 

  54. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary, Correlation between structure, dielectric and multiferroic properties of lead free Ni modified BaTiO3 solid solution. Ceram. Int. 46, 27336–27351 (2020)

    CAS  Google Scholar 

  55. I. Dincer, C. Zamfirescu, Sustainable hydrogen production, 1st ed. Elsevier (2016) (eISBN: 9780128017487)

  56. Y. Wang, H. Suzuki, J. Xie, O. Tomita, D.J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018)

    CAS  Google Scholar 

  57. R. Li, C. Li, Chapter one—photocatalytic water splitting on semiconductor-based photocatalysts. Adv. Catal. 60, 1–57 (2017)

    Google Scholar 

  58. R.S. Mulliken, A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793 (1934)

    CAS  Google Scholar 

  59. R.S. Mulliken, Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments. J. Chem. Phys. 3, 573–585 (1935)

    CAS  Google Scholar 

  60. M.D.I. Bhuyan, S. Das, M.A. Basith, Sol-gel synthesized double perovskite Gd2FeCrO6 nanoparticles: Structural, magnetic and optical properties. J. Alloys Compd. 878, 160389 (2021)

    CAS  Google Scholar 

  61. Y. Wu, M.K.Y. Chan, G. Ceder, Prediction of semiconductor band edge positions in aqueous environments from first principles. Phys. Rev. B 83, 235301 (2011)

    Google Scholar 

  62. D. Kong, Y. Zheng, M. Kobielusz, Y. Wang, Z. Bai, W. Macyk, X. Wang, J. Tang, Recent advances in visible light-driven water oxidation and reduction in suspension systems. Mater. Today 21, 897–924 (2018)

    CAS  Google Scholar 

  63. F. Cai, Y. Meng, B. Hu, Y. Tang, W. Shi, Microwave-assisted synthesis of La-Cr co-doped SrTiO3 nano-particles and their use in photocatalytic hydrogen evolution under visible light. RSC Adv. 5(71), 57354 (2015)

    CAS  Google Scholar 

  64. L. Wang, Q. Pang, Q. Song, X. Pan, L. Jia, Novel microbial synthesis of Cu doped LaCoO3 photocatalyst and its high efficient hydrogen production from formaldehyde solution under visible light irritation. Fuel 140, 267 (2015)

    CAS  Google Scholar 

  65. F.A. Frame, T.K. Townsend, R.L. Chamousis, E.M. Sabio, T. Dittrich, N.D. Browning, F.E. Osterloh, Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J. Am. Chem. Soc. 133(19), 7264 (2011)

    CAS  Google Scholar 

  66. Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Branched WO3 nanosheet array with layered C3N4 hetrojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26, 5043–5049 (2014)

    CAS  Google Scholar 

  67. W. Yan, Y. Zhang, W. Xie, S. Sun, J. Ding, J. Bao, C. Gao, CaIn2O4/Fe–TiO2 composite photocatalysts with enhanced visible light performance for hydrogen production. J. Phys. Chem. C 118(12), 6077 (2014)

    CAS  Google Scholar 

  68. T. Yang, Q. Li, X. Chang, K.C. Chou, X. Hou, Preparation of TiOxNy/TiN composite for photocatalytic hydrogen evolution under visible light. Phys. Chem. Chem. Phys. 17, 28782 (2015)

    CAS  Google Scholar 

  69. I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie, A. Fahmi, Nonstoichiometric defects and optical properties in LiNbO3. J. Phys. Chem. B 105, 12242–12248 (2001)

    CAS  Google Scholar 

  70. I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie, A. Fahmi, Band structure treatment of the influence of nonstoichiometric defects on optical properties in LiNbO3. J. Appl. Phys. 90, 5542 (2001)

    CAS  Google Scholar 

  71. D.K. Ray, A.K. Himanshu, T.P. Sinha, Structural and low frequency dielectric studies of conducting polymer nanocomposites. Ind. J. Pure Appl. Phy. 45(8), 692 (2007)

    CAS  Google Scholar 

  72. S. Chougule, B. Chougule, Studies on electrical properties and the magnetoelectric effect on ferroelectric-rich (x) Ni0.8Zn0.2Fe2O4 + (1–x) PZT ME composites. Smart Mater Struct. 16, 493–497 (2007)

    CAS  Google Scholar 

  73. S.K. Tripathy, A. Gupta, M. Kumari, Studies on electrical conductivity and dielectric behaviour of PVdF-HFP-PMMA-NaI polymer blend electrolyte. Bull. Mater. Sci. 35, 969–975 (2012)

    Google Scholar 

  74. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    CAS  Google Scholar 

  75. O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl Phys. 97, 084107 (2005)

    Google Scholar 

  76. O. Raymond, R. Font, N. Suárez, J. Portelles, J.M. Siqueiros, Effects of two kinds of FeNbO4 precursors in the obtainment and dielectric properties of PFN ceramics. Ferroelectrics 294, 141–154 (2003)

    CAS  Google Scholar 

  77. N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, Dielectric and electrical properties of the double perovskite PbBaBiNbO6. J. Electron. Mater. 44, 4275–4282 (2015)

    CAS  Google Scholar 

  78. E.H. Lahrar, O. El Ghadraoui, A. Harrach, M. Zouhairi, T. Lamcharfi, E.H. El Ghadraoui, Influence of strontium on the structural and dielectric properties of hydrothermally processed PbTiO3 ceramic. Asian J. Chem. 32, 597–601 (2020)

    CAS  Google Scholar 

  79. B.N. Parida, R. Padhee, D. Suara, A. Mishra, R.N.P. Choudhary, Multiferroic and conduction characteristics of (Bi0.5Ba0.5) (Fe0.5Ti0.5) O3 solid solution. J. Mater. Sci. Mater. Electron. 27, 9015–9021 (2016)

    CAS  Google Scholar 

  80. K. Bhoi, S. Dash, S. Dugu, D.K. Pradhan, M.M. Rahaman, N.B. Simhachalam, A.K. Singh, P.N. Vishwakarma, R.S. Katiyar, D.K. Pradhan, Phase transitions and magneto-electric properties of 70 wt.% Pb(Fe0.5Nb0.5)O3 – 30 wt.% Co0.6Zn0.4Fe1.7Mn0.3O4 multiferroic composite. J. Appl. Phys. 130, 114101 (2021)

    CAS  Google Scholar 

  81. I.S. Zheludev, Physics of crystalline dielectrics, electrical properties, vol. 2 (Plenum Press, New York, 1971), p. 474

    Google Scholar 

  82. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  83. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  84. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    CAS  Google Scholar 

  85. M. Tan, Y. Koseoglu, F. Alana, E. Senturk, Overlapping large polaron tunneling conductivity and giant dielectric constant in Ni0.5Zn0.5Fe1.5Cr0.5O4 nanoparticles (NPs). J. Alloys Compd. 509, 9399–9405 (2011)

    CAS  Google Scholar 

  86. O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part II. Impedance spectroscopy characterization. J. Appl. Phys. 97, 084108 (2005)

    Google Scholar 

  87. B.A. Boukamp, Equivalent circuit-EQUIVCRT program users manual, vol. 3. University of Twente, The Netherlands (1989)

  88. A.R. West, D.C. Sinclair, N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 01, 65–71 (1997)

    CAS  Google Scholar 

  89. S. Sen, R.N.P. Choudhary, P. Pramanik, Structural and electrical properties of Ca2+-modified PZT electroceramics. Phys. B 387, 56–62 (2007)

    CAS  Google Scholar 

  90. N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, Structural, dielectric and electrical properties of the Ba2BiNbO6 double perovskite. J. Mater. Sci. Mater. Electron. 26, 3797–3804 (2015)

    CAS  Google Scholar 

  91. S. Sahoo, R.N.P. Choudhary, B.K. Mathur, Structural, ferroelectric and impedance spectroscopy properties of Y3+ modified Pb(Fe0.5Nb0.5)O3 ceramics. Phys. B 406, 1660–1664 (2011)

    CAS  Google Scholar 

  92. D. Bochenek, P. Niemiec, J. Korzekwa, B. Durtka, Z. Stokłosa, Microstructure and properties of the ferroelectric-ferromagnetic PLZT-ferrite composites. Symmetry. 10, 59 (2018)

    Google Scholar 

  93. P.R. Mandal, T.K. Nath, Oxygen vacancy and charge hopping related dielectric relaxation and conduction process in orthorhombic Gd doped YFe0.6Mn0.4O3 mutiferroics. J. Alloys Compd. 628, 379–389 (2015)

    CAS  Google Scholar 

  94. M. Arshad, D. Huiling, J.M. Sufyan, A. Maqsoodd, I. Ashraf, S. Hussain, W. Ma, H. Ran, Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram. Int. 46, 2238–2246 (2020)

    CAS  Google Scholar 

  95. S.K. Samal, S. Halder, M.K. Mallick, R.N.P. Choudhary, S. Bhuyan, Frequency- and temperature-dependent dielectric features of multi-component electronic material: (Pb0.8Dy0.1Bi0.1)(Fe0.2Ti0.8)O3. Appl. Phys. A 126, 377 (2020)

    CAS  Google Scholar 

  96. R. Das, P. Kumar, R.N.P. Choudhary, Studies of structural and electrical properties of (Pb0.9Bi0.05Dy0.05)(Fe0.2Ti0.8)O3. Appl. Phys. A 126, 886 (2020)

    CAS  Google Scholar 

  97. T. Sahu, B. Behera, Dielectric, electrical and magnetic study of rare earth doped bismuth ferrite lead titanate. Appl. Phys. A 125, 407 (2019)

    Google Scholar 

  98. T. Sahu, B. Behera, Investigation on structural, dielectric and ferroelectric properties of samarium-substituted BiFeO3PbTiO3 composites. J. Adv. Dielect. 7, 1750001 (2017)

    CAS  Google Scholar 

  99. Z. Ren, G. Xu, X. Wei, Y. Liu, X. Hou, P. Du, W. Weng, G. Shen, G. Han, Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl. Phys. Lett. 91, 063106 (2007)

    Google Scholar 

  100. P.P. Khirade, S.D. Birajdar, A.V. Raut, K.M. Jadhav, Multiferroic iron doped BaTiO3 nano ceramics synthesized by sol-gel auto combustion: Influence of iron on physical properties. Ceram. Int. 42, 12441–12451 (2016)

    CAS  Google Scholar 

  101. D. Brzezinska, R. Skulski, D. Bochenek, P. Niemiec, A. Chrobak, Ł Fajfrowski, S. Matyjasik, The magnetic and electric properties of PZT-PFW-PFN ceramics. J. Alloys Compd. 737, 299–307 (2018)

    CAS  Google Scholar 

  102. M.J. Miah, M.N.I. Khan, A.K.M.A. Hossain, Weak ferromagnetism and magnetoelectric effect in multiferroic xBa0.95Sr0.05TiO3 – (1-x)BiFe0.9Gd0.1O3 relaxors. J. Magn. Magn. Mat. 401, 600–611 (2016)

    CAS  Google Scholar 

  103. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

    CAS  Google Scholar 

  104. H. Mestric, R.A. Eichel, T. Kloss, K.P. Dinse, S. Lanbach, P.C. Schmidt, K.A. Schönau, M. Knapp, H. Ehrenberg, Iron-oxygen vacancy defect centers in PbTiO3: Newman superposition model analysis and density functional calculations. Phys. Rev. B 71, 134109 (2005)

    Google Scholar 

  105. D. Zhang, L. Feng, W. Huang, W. Zhao, Z. Chen, X. Li, Oxygen vacancy-induced ferromagnetism in Bi4NdTi3FeO15 multiferroic ceramics. J. Appl. Phys. 120, 154105 (2016)

    Google Scholar 

  106. L. He, L. Guo, Competition of the antiferromagnetic superexchange with the ferromagnetic double exchange in dicobalt complexes. Appl. Phys. Lett 97, 182509 (2010)

    Google Scholar 

  107. R. Logemann, A.N. Rudenko, M.I. Katsnelson, A. Kirilyuk, Exchange interactions in transition metal based oxides: role of oxygen spin polarization. J. Phys. Condens. Matter 29, 335801 (2017)

    CAS  Google Scholar 

  108. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59–R74 (2004)

    CAS  Google Scholar 

  109. J.M.D. Coey, Magnetism and magnetic material (Cambridge University Press, Cambridge, 2010), pp. 135–145

    Google Scholar 

Download references

Acknowledgements

We acknowledge the timely supports of Institute Instrumentation Centre (IIC), IIT Roorkee, for low-temperature magnetic (VSM) measurements, and Central Research Facility (CRF), IIT Kharagpur, for room temperature measurements. We also acknowledge the support of UGC-DAE CSR for providing facility to carry out Raman characterizations.

Author information

Authors and Affiliations

Authors

Contributions

DKP: this manuscript is related to Mr Pati's PhD thesis-related work. Almost all experimental part such as synthesis, FTIR, Raman, electrical characterizations, magnetic characterizations, and PE loop was contributed by him. In addition, he has studied the literature survey, result and discussion. RP: Dr. Padhee is the PhD supervisor of Mr. Pati. His contribution is vital because he has designed the research problem and provided the tips on how to execute the problem. PRD: Dr. Das is another supervisor of Mr. Pati who is an expert in the field of multiferroics. These expertises of Dr. Padhee and Dr. Das have been utilized by Mr Pati to complete the present research problem and analysis of results. BNP: Dr. Parida helped Mr. Pati in few experimental works and discussions relating to UV–visible and FTIR spectroscopy. BB: Dr. Behera helped in experimental works and discussions on electrical characterizations, XRD and FESEM analysis.

Corresponding author

Correspondence to R. Padhee.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication and there has been no financial support for this work that could have influenced its outcome. We also confirm that this article has not been submitted to any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, D.K., Das, P.R., Parida, B.N. et al. Structural, electrical, magnetic and narrow band gap-correlated optical characteristics of multiferroic [Pb(Fe0.5Nb0.5)O3]0.5−[(Ba0.8Sr0.2)TiO3]0.5. J. Korean Ceram. Soc. 59, 811–834 (2022). https://doi.org/10.1007/s43207-022-00220-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00220-1

Keywords

Navigation