Skip to main content
Log in

Defects controlled stress engineering in Al-doped ZnO transparent multilayered thin films

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study explores stress engineering in multilayered structures of Al-doped ZnO thin films by controlling defects in them. Al-doped ZnO thin films are examples of transparent conducting oxides. Owing to their high conductivity and transparency, Al-doped ZnO thin films have various promising applications. However, defects and dislocations in thin films can deteriorate their electrical and optical properties. These defects or dislocations can be formed during the thin-film deposition process. Especially, defects can be formed between the layers during the stacking process of the sol–gel method. Therefore, methods to control defects have been designed and simulated to engineer stress in thin films. In this study, layered Al-doped ZnO thin films with different thicknesses were prepared to investigate the interface effects and electron motion in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Predoana, S. Preda, M. Nicolescu, M. Anastasescu, J.M. Calderon-Moreno, M. Duta, M. Gartner, M. Zaharescu, Influence of the substrate type on the microstructural, optical and electrical properties of sol-gel ITO films. J. Sol-Gel Sci. Technol. 71, 303–312 (2014)

    Article  CAS  Google Scholar 

  2. O. Tari, A. Aronne, M.L. Addonizio, S. Daliento, E. Fanelli, P. Pernice, Sol-gel synthesis of ZnO transparent and conductive films: a critical approach. Solar Energy Mater. Solar Cells 105, 179–186 (2012)

    Article  CAS  Google Scholar 

  3. Y.S. Kim, W. Tai, Electrical and optical properties of Al-doped ZnO thin films by sol-gel process. Appl. Surf. Sci. 253, 4911–4916 (2007)

    Article  CAS  Google Scholar 

  4. J.H. Kim, J.H. Ji, S.W. Min, G.H. Jo, M.W. Jung, M.J. Park, S.K. Lee, J.H. Koh, Enhanced conductance properties of UV laser/RTA annealed Al-doped ZnO thin films. Ceram. Int. 43, 3900–3904 (2017)

    Article  CAS  Google Scholar 

  5. C.M. Lee, R.P. Dwivedi, W.W. Lee, C.S. Hong, W.I. Lee, H.W. Kim, IZO/Al/GZO multilayer films to replace ITO films. J. Mater. Sci. Mater. Electron. 19, 981–985 (2008)

    Article  CAS  Google Scholar 

  6. S.Y. Kuo, W.C. Chen, C.P. Cheng, Investigation of annealing-treatment on the optical and electrical properties of sol-gel-derived zinc oxide thin films. Superlattices Microstruct. 39, 162–170 (2006)

    Article  CAS  Google Scholar 

  7. G.H. Jo, J.H. Ji, K. Masao, J.G. Ha, S.K. Lee, J.H. Koh, CO laser annealing effects for Al-doped ZnO multilayered films. Ceram. Int. 44, S211–S215 (2018)

    Article  CAS  Google Scholar 

  8. J.H. Kang, G.H. Jo, J.H. Ji, J.H. Koh, Improved electrical properties of laser annealed In and Ga co-doped ZnO thin films for transparent conducting oxide applications. Ceram. Int. 45, 23934–23940 (2019)

    Article  CAS  Google Scholar 

  9. A.J. Hashim, M.S. Jaafar, A.J. Ghazai, N.M. Ahmed, Fabrication and characterization of ZnO thin film using sol-gel method. Optik 124, 491–492 (2013)

    Article  CAS  Google Scholar 

  10. G.H. Jo, S.H. Kim, J.H. Koh, Enhanced electrical and optical properties based on stress reduced graded structure of Al-doped ZnO thin films. Ceram. Int. 44, 735–741 (2018)

    Article  CAS  Google Scholar 

  11. N.M. Ahmed, F.A. Sabaha, H.I. Abdulgafour, A. Alsadig, A. Sulieman, M. Alkhoaryef, The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 13, 102159 (2019)

    Article  Google Scholar 

  12. D. Fang, P. Yao, H. Li, Influence of annealing temperature on the structural and optical properties of Mg–Al co-doped ZnO thin films prepared via sol–gel method. Ceram. Int. 40, 5873–5880 (2014)

    Article  CAS  Google Scholar 

  13. A.S. Bakri, M.Z. Sahdan, F. Adriyanto, N.A. Raship, N.D.M. Said, S.A. Abdullah, M.S. Rahim, Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. AIP Conf. Proc. 1788, 030030 (2017)

    Article  Google Scholar 

  14. N. Srinatha, P. Raghu, H.M. Mahesh, B. Angadi, Spin-coated Al-doped ZnO thin films for optical applications: structural, micro-structural, optical and luminescence studies. J. Alloys Compds. 722, 888–895 (2017)

    Article  CAS  Google Scholar 

  15. L. Ma, S. Ma, H. Chen, X. Ai, X. Huang, Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering. Appl. Surf. Sci. 257, 10036–10041 (2011)

    Article  CAS  Google Scholar 

  16. C. Moditswe, C.M. Muiva, A. Juma, Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis. Optik 127, 8317–8325 (2016)

    Article  CAS  Google Scholar 

  17. J.S. Baek, J.H. Koh, Distortion control of (1–x)Ba(Hf, Ti)O3–x(Ba, Ca)TiO3 piezoelectric ceramics to improved piezoelectric properties and related Curie temperature. J. Alloys Compds. 898, 162811 (2022)

    Article  CAS  Google Scholar 

  18. A.M. Alsaad, A.A. Ahmad, Q.M. Al-Bataineh, A.A. Bani-Salameh, H.S. Abdullah, I.A. Qattan, Z.M. Albataineh, A.D. Telfah, Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) co-doped ZnO thin films. Materials 13, 1737 (2020)

    Article  CAS  Google Scholar 

  19. D. Kumar, Z. Pei, Solution processed, vertically aligned, AZO nanocolumn array for chemiresistive sensor application with UV-enhanced sensitivity. Ceram. Int. 46, 21925–21931 (2020)

    Article  CAS  Google Scholar 

  20. G.R. Dillip, A.N. Banerjee, V.C. Anitha, B.D.P. Raju, S.W. Joo, B.K. Min, Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl. Mater. Interfaces 8, 5025–5039 (2016)

    Article  CAS  Google Scholar 

  21. B.K. Sharma, N. Khare, Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films. J. Phys. D Appl. Phys. 43, 465402 (2010)

    Article  Google Scholar 

  22. B.J. Jin, H.S. Woo, S. Im, S.H. Bae, S.Y. Lee, Relationship between photoluminescence and electrical properties of ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 169–170, 521–524 (2001)

    Article  Google Scholar 

  23. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X. Du, Oxygen vacancies: the origin of n-type conductivity in ZnO. Phys. Rev. B 93, 235305 (2016)

    Article  Google Scholar 

  24. Y.C. Leea, S.Y. Hu, W. Water, Y.S. Huang, M.D. Yang, J.L. Shen, K.K. Tiong, C.C. Huang, Improved optical and structural properties of ZnO thin films by rapid thermal annealing. Solid State Commun. 143, 250–254 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chung-Ang University Research Grants in 2020 and supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hyuk Koh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Yun, J., Oh, YY. et al. Defects controlled stress engineering in Al-doped ZnO transparent multilayered thin films. J. Korean Ceram. Soc. 59, 742–748 (2022). https://doi.org/10.1007/s43207-022-00214-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00214-z

Keywords

Navigation