Skip to main content
Log in

The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of perovskite BaSnO3 compound

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The effects of three axial dilation strains and chalcogens-doped BaSnO3 on the electronic, optic, and thermoelectric properties of perovskite BaSnO3compound were carried out using density functional theory. It was found that after applying dilation strain up to 2.5%, the bandgap decreases from 3.149 eV (pure) to 2.18% (2.5% of dilation strain). Moreover, when chalcogens (S, Se, and Te) and 2.5% of three axial dilations occur in the BaSnO3 compound, the BaSnO3 becomes a semiconductor with a direct bandgap. Furthermore, the bandgap decreases white the increase of chalcogens elements in BaSnO3 up to 5.0%. Furthermore, when S, Se, or Te-doped BaSnO3 with the presence of 2.5% of three axial dilations, the absorption coefficient shifts into the visible region due to the reduction of bandgap which is quite recommended the photovoltaic applications. In addition, the transport properties show that the electrical conductivity increased with increasing temperature in the case of S/Se-doped + 2.5% of dilation strain and it decreases in the case of Te-doped BaSnO3 + 2.5% of dilation strain due to the increase of collisions between the vibrating atoms and moving electrons, while the thermal conductivity increases with increasing temperature for all studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: Ab initio calculations. Opt. Mater. 109, 110442 (2020)

    Article  CAS  Google Scholar 

  2. K. Balamurugan, N. Harish Kumar, J. AroutChelvane, P.N. Santhosh, Room temperature ferromagnetism in Fe-doped BaSnO3. J. Alloys. Compd. 472, 9–12 (2009)

    Article  CAS  Google Scholar 

  3. C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)

    Article  CAS  Google Scholar 

  4. D.B. Mitzi, K. Chondroudis, C.R. Kagan, Organic-inorganic electronics. J. Res. Develop. 45, 29–45 (2001)

    CAS  Google Scholar 

  5. U. Schwarz et al., Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3. Phys. Rev. B 53, 12545–12548 (1996)

    Article  CAS  Google Scholar 

  6. R. Von Helmolt et al., Giant negative magnetoresistance in perovskite like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993)

    Article  Google Scholar 

  7. J.H. Haeni et al., Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004)

    Article  CAS  Google Scholar 

  8. J.G. Bednorz, K.A. Muller, Perovskite-type oxides—the new approach to high-Tc superconductivity. Rev. Mod. Phys. 60, 585–600 (1988)

    Article  CAS  Google Scholar 

  9. O. Malinkiewicz et al., Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 8, 128–132 (2014)

    Article  CAS  Google Scholar 

  10. M.L. Michael et al., Efficient hybrid solar cells based on meso-superstructured organometal halide Perovskites. Science 338, 643–647 (2012)

    Article  Google Scholar 

  11. G.E. Eperon et al., Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014)

    Article  CAS  Google Scholar 

  12. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Electronic, optical, and thermoelectric properties of perovskite BaTiO3 compound under the effect of compressive strain. Chem. Phys. 544, 111105 (2021)

    Article  CAS  Google Scholar 

  13. S. Soleimanpour, F. Kanjouri, First principle study of electronic and optical properties of the cubic perovskite BaSnO3. Physica B 432, 16–20 (2014)

    Article  CAS  Google Scholar 

  14. J. John, S. Suresh, S. Savitha Pillai, R. Philip, V.P. Mahadevan Pillai, Effect of Fe doping on the structural, morphological, optical, magnetic and dielectric properties of BaSnO3. J. Mater. Sci. 32, 11763–11780 (2021)

    CAS  Google Scholar 

  15. J. Li, Z. Ma, R. Saa, K. Wu, Improved thermoelectric power factor and conversion efficiency of perovskite barium stannate. RSC Adv. 7, 32703 (2017)

    Article  CAS  Google Scholar 

  16. P. Rajasekaran et al., Effect of Sb substitution on structural, morphological and electrical properties of BaSnO3 for thermoelectric application. Physica B 597, 412387 (2020)

    Article  CAS  Google Scholar 

  17. L.J. Shamand, M. Schlüter, Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 1888–1891 (1983)

    Article  Google Scholar 

  18. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020)

    Article  CAS  Google Scholar 

  19. G.K.H. Madsen, D.J. Singh, A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  CAS  Google Scholar 

  20. V. Sahni, K.-P. Bohnen, M.K. Harbola, Analysis of the local-density approximation of density-functional theory. Phys. Rev. A 37, 6 (1988)

    Article  Google Scholar 

  21. J.A. Camargo-Martínez, R. Baquero, Performance of the modified Becke-Johnson potential for semiconductors. Phys. Rev. B 86, 195106 (2012)

    Article  Google Scholar 

  22. A. Bouhemadou, K. Haddadi, Structural, elastic, electronic and thermal properties of the cubic perovskite-typeBaSnO3. Solid State Sci. 12, 630–636 (2010)

    Article  CAS  Google Scholar 

  23. D.J. Singh, Xu. Qiang, K.P. Ong, strain effect on the band gap and optical properties of perovskites SrSnO3 and BaSnO3. Appl. Phys. Lett. 104, 011910 (2014)

    Article  Google Scholar 

  24. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Calcium hafnate perovskite from an insulator to a semiconductor for photovoltaic and photocatalytic hydrogen production from water splitting applications. Super lattices. Microstruct. 160, 107058 (2021)

    Article  CAS  Google Scholar 

  25. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Chalcogens’ impurities and a single F-center in SHO: Ab initio calculations. Mater. Sci. Semicond. Process. 138, 106271 (2022)

    Article  CAS  Google Scholar 

  26. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Importance of spin-orbit coupling on photovoltaic properties of Pb-free vacancy ordered double perovskites halides X2TeY6 (X = Cs, Rb, and Y = I, Br, Cl): first-principles calculations. Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7631

    Article  Google Scholar 

  27. B. Mouhib, S. Dahbi, A. Douayar, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba, and Sr) materials for eco-friendly solar cells. Superlattices. Microstruct. (2021). https://doi.org/10.1016/j.spmi.2021.107124

    Article  Google Scholar 

  28. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, structural and optoelectronic properties, and infrared spectrum of cubic BaSnO3from first principales calculations. J. Appl. Phys. 112, 043703 (2012)

    Article  Google Scholar 

  29. N. Tahiri, S. Dahbi, I. Dani, O. El Bounagui, H. Ez-Zahraouy, Magnetic, magnetocaloric and thermoelectric investigations of perovskite LaFeO3 compound: first principles and Monte Carlo calculations. Comput. Theor. Chem. 1204, 113421 (2021)

    Article  CAS  Google Scholar 

  30. N. Tahiri, S. Dahbi, I. Dani, O. El Bounagui, H. Ez-Zahraouy, Magnetocaloric and thermoelectric properties of the perovskite LaMnO3 material: a DFT study and Monte Carlo technique. Phase Transit. 94, 826–834 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: BA, SD, NT. Acquisition of data: BA and SD. Analysis and/or interpretation of data: BA, SD, NT, OEB, HE-Z, and AB. Drafting the manuscript: BA, SD, and NT. Revising the manuscript critically for important intellectual content: BA, SD, NT, OEB, HE-Z, and AB. Approval of the version of the manuscript to be published (the names of all authors must be listed): BA, SD, NT, OEB, HE-Z, and AB.

Corresponding author

Correspondence to N. Tahiri.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akenoun, B., Dahbi, S., Tahiri, N. et al. The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of perovskite BaSnO3 compound. J. Korean Ceram. Soc. 59, 715–728 (2022). https://doi.org/10.1007/s43207-022-00212-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00212-1

Keywords

Navigation