Skip to main content
Log in

Effect of heat treatment on the wear behavior of WC-Ni-Cr and WC-Ni-Cr + Cr3C2 coatings fabricated by high-velocity oxy-fuel method

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, a tungsten carbide (WC)-Ni-Cr composite and a coating composition of Cr3C2 in WC-Ni-Cr were selected and fabricated using a high-velocity oxy-fuel (HVOF) method, to explore their applicability as wear-resistant coatings on cast iron substrates used in automotive brakes. Furthermore, to investigate the effect of post-annealing on the wear performance of the coatings, the coated samples were heat-treated at 500 and 850 °C. The microstructure, phase formation behavior, composition, and wear rate of the coated samples and post-annealed coatings were analyzed. Furthermore, the wear characteristics of the coatings were analyzed using a ball-on-disk method with a Si3N4 ball. By comparing the wear and friction characteristics of each coating, before and after heat treatment, the wear resistance performance of the coating could be related to the surface oxidation caused by heat treatment. In summary, the oxidation and phase change caused by the heat treatment reduced the wear resistance; however, if appropriate heat treatment conditions are satisfied, the frictional force required for automotive braking can be increased. Furthermore, the WC-Ni-Cr + Cr3C2 coating, where Cr3C2 was added to WC-Ni-Cr, exhibited an improved wear resistance compared to the coating with only WC-Ni-Cr. This was predicted to be an enhancement effect produced by the addition of Cr3C2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Y. Liu, Y. Wu, Y. Ma, W. Gao, G. Yang, H. Fu, N. Xi, H. Chen, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.02.235

    Article  Google Scholar 

  2. A. Yevtushenko, M. Kuciej, E. Och, O. Yevtushenko, Int Heat Mass Transf Commun (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.05.010

    Article  Google Scholar 

  3. A. Yevtushenko, M. Kuciej, E. Och, O. Yevtushenko, Int Heat Mass Transf Commun (2017). https://doi.org/10.1016/j.icheatmasstransfer.2017.07.021

    Article  Google Scholar 

  4. D.G. Bhosale, T.R. Prabhu, W.S. Rathod, M.A. Patil, S.W. Rukhande, Wear (2020). https://doi.org/10.1016/j.wear.2020.203520

    Article  Google Scholar 

  5. S.S. Lee, J Korea Acad Coop Soc. (2020). https://doi.org/10.5762/KAIS.2020.21.6.204

    Article  Google Scholar 

  6. D.A. Stewart, P.H. Shipway, D.G. McCartney, Wear (1999). https://doi.org/10.1016/S0043-1648(99)00032-0

    Article  Google Scholar 

  7. Q. Yang, T. Senda, A. Ohmori, Wear (2003). https://doi.org/10.1016/S0043-1648(02)00294-6

    Article  Google Scholar 

  8. M. Xie, S. Zhang, M. Li, Appl. Surf. Sci. (2013). https://doi.org/10.1016/j.apsusc.2013.03.010

    Article  Google Scholar 

  9. G. Hou, Y. An, G. Liu, H. Zhou, J. Chen, Z. Chen, J. Therm. Spray Technol. (2011). https://doi.org/10.1007/s11666-011-9661-x

    Article  Google Scholar 

  10. R. Nieminen, P. Vuoristo, K. Niemi, T. Mantyla, G. Barbezet, Wear (1997). https://doi.org/10.1016/S0043-1648(97)00138-5

    Article  Google Scholar 

  11. C.J. Li, G.C. Ji, Y.Y. Wang, K. Sonoya, Thin Solid Films (2002). https://doi.org/10.1016/S0040-6090(02)00708-3

    Article  Google Scholar 

  12. Q. Wang, L. Li, G. Yang, X. Zhao, Z. Ding, Surf. Coat. Technol. (2013). https://doi.org/10.1016/j.surfcoat.2012.03.080

    Article  Google Scholar 

  13. T. Wang, F. Ye, Int J Refract Metals Hard Mater. (2018). https://doi.org/10.1016/j.ijrmhm.2017.11.007

    Article  Google Scholar 

  14. N. Vashistha, S.G. Sapate, P. Bagde, A.B. Rathod, Tribol Int. (2018). https://doi.org/10.1016/j.triboint.2017.10.017

    Article  Google Scholar 

  15. S.H. Zhang, J.H. Yoon, M.X. Li, T.Y. Cho, Y.K. Joo, J.Y. Cho, Mater. Chem. Phys. (2010). https://doi.org/10.1016/j.matchemphys.2009.09.025

    Article  Google Scholar 

  16. T. Yamamoto, Y. lkuhara, T. Watanabe, T. Sakuma, Y. Taniuchi, K. Okada, T. Tanase (2001) J. Mater. Sci. https://doi.org/10.1023/A:1017953701641

  17. G. Li, Y. Peng, L. Yan, T. Xu, J. Long, F. Luo, J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2019.11.030

    Article  Google Scholar 

  18. S.M. Park, S. Nahm, Y.S. Oh, J. Korean Ceram. Soc. (2021). https://doi.org/10.1007/s43207-020-00086-1

    Article  Google Scholar 

  19. S.H. Jung, S.H. Jeon, H.M. Park, Y.G. Jung, S.W. Myoung, B.I. Yang, J. Korean Ceram. Soc. (2018). https://doi.org/10.4191/kcers.2018.55.4.05

    Article  Google Scholar 

  20. J.Y. Kim, D.S. Lim, S.R. Lee, E.S. Byun, G.H. Lee, J. Korean Ceram. Soc. 32, 1315 (1995)

    CAS  Google Scholar 

  21. M. Richert, B. Leszczynska-Madej, J. Ach. Mater. Manuf. Eng. 46, 95 (2011)

    Google Scholar 

  22. R. Ahmed, H. Yu, L. Edwards, J.R. Santisteban, Proc. World Congress Eng. (2007)

  23. V. Stoica, R. Ahmed, T. Itsukaichi, Surf. Coat. Technol. (2005). https://doi.org/10.1016/j.surfcoat.2005.03.026

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported under the program of “Development of the high performance brake for passenger car and commercial vehicle to reduce particulate matter” (20003598) by ministry of trade, industry, and energy of Korea.

Funding

“Development of the high performance brake for passenger car and commercial vehicle to reduce particulate matter” (20003598) by ministry of trade, industry, and energy of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Oh.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.Y., Nahm, S. & Oh, Y.S. Effect of heat treatment on the wear behavior of WC-Ni-Cr and WC-Ni-Cr + Cr3C2 coatings fabricated by high-velocity oxy-fuel method. J. Korean Ceram. Soc. 59, 465–472 (2022). https://doi.org/10.1007/s43207-022-00204-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00204-1

Keywords

Navigation