Skip to main content
Log in

Synthesis and characterization of Cr substituted Mn–Zn nanoferrites with improved dielectric, electrical conductivity and impedance properties for electronic device applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In the present study, the impact of Cr ion substitution on Mn–Zn soft nanoferrites has enhanced the dielectric, electrical conductivity, and impedance properties. The nanoferrites have been synthesized via a non-conventional wet chemical-based co-precipitation technique. Raman scattering confirms the spinel nature and also reveals a positive frequency shift with the Cr ion substitution. As Cr ion concentration increases, the dielectric constant (ε′) increases significantly at room temperature. At 100 Hz, x = 0.5 [Mn0.5Cr0.5Fe2O4] resulted in higher value of ε′ ~ 104 and a lower value of loss (tan δ) ~ 3.9. Frequency modulated ac conductivity rises with increasing Cr substitution in Mn–Zn nanoferrites. Electric modulus, impedance spectra, and conduction nature were found to improve with increasing Cr ions. The Nyquist plot shows two semicircle responses in the high and mid-frequency regions, which is due to a conduction mechanism of charges (Fe2+ ↔ Fe3+) that is related to bulk grains and grain boundary contribution, respectively. High dielectric constants and minimum electric loss in soft nanoferrite materials are useful for electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, J. Magn. Magn. Mater. 298, 83 (2006)

    Article  CAS  Google Scholar 

  2. M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999)

    Article  CAS  Google Scholar 

  3. H.M. Zaki, S.H. Al-Heniti, T.A. Elmosalami, J. Alloys Compd. 633, 104 (2015)

    Article  CAS  Google Scholar 

  4. E. Otsuki, S. Yamada, T. Otsuka, K. Shoji, T. Sato, J. Appl. Phys. 69, 5942 (1991)

    Article  CAS  Google Scholar 

  5. Y. Liu, S. He, J. Magn. Magn. Mater. 320, 3318 (2008)

    Article  CAS  Google Scholar 

  6. K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, J. Magn. Magn. Mater. 321, 2433 (2009)

    Article  CAS  Google Scholar 

  7. J. Song, L. Wang, N. Xu, Q. Zhang, J. Rare Earths. 28, 451 (2010)

    Article  CAS  Google Scholar 

  8. U. Ghazanfar, S.A. Siddiqi, G. Abbas, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 118, 84 (2005)

    Article  Google Scholar 

  9. M.M. Hessien, M.M. Rashad, K. El-Barawy, I.A. Ibrahim, J. Magn. Magn. Mater. 320, 1615 (2008)

    Article  CAS  Google Scholar 

  10. S.F. Wang, Y.J. Chiang, Y.F. Hsu, C.H. Chen, J. Magn. Magn. Mater. 365, 119 (2014)

    Article  CAS  Google Scholar 

  11. A. Thakur, P. Mathur, M. Singh, J. Phys. Chem. Solids. 68, 378 (2007)

    Article  CAS  Google Scholar 

  12. K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971)

    Article  CAS  Google Scholar 

  13. E.R. Kumar, T. Arunkumar, T. Prakash, Superlattices Microstruct. 85, 530 (2015)

    Article  Google Scholar 

  14. M.R. Syue, F.J. Wei, C.S. Chou, C.M. Fu, Thin Solid Films 519, 8303 (2011)

    Article  CAS  Google Scholar 

  15. E. Ranjith Kumar, R. Jayaprakash, M.S. Seehra, T. Prakash, S. Kumar, J. Phys. Chem. Solids. 74, 943 (2013)

    Article  CAS  Google Scholar 

  16. A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, J. Appl. Phys. 91, 6626 (2002)

    Article  CAS  Google Scholar 

  17. S.A. Morrison, C.L. Cahill, E.E. Carpenter, S. Calvin, V.G. Harris, J. Appl. Phys. 93, 7489 (2003)

    Article  CAS  Google Scholar 

  18. H. Anwar, A. Maqsood, I.H. Gul, J. Alloys Compd. 626, 410 (2015)

    Article  CAS  Google Scholar 

  19. A. Košak, D. Makovec, A. Žnidaršič, M. Drofenik, J. Eur. Ceram. Soc. 24, 959 (2004)

    Article  Google Scholar 

  20. M.R. Syue, F.J. Wei, C.S. Chou, C.M. Fu, J. Appl. Phys. 109, 07A324 (2011)

    Article  Google Scholar 

  21. D. Ravinder, K.V. Kumar, Bull. Mater. Sci. 24, 505 (2001)

    Article  CAS  Google Scholar 

  22. M. Asif Iqbal, M. Ul-Islam, I. Ali, H.M. Khan, G. Mustafa, I. Ali, Ceram. Int. 39, 1539 (2013)

    Article  CAS  Google Scholar 

  23. R. Islam, M.A. Hakim, M.O. Rahman, H. Narayan Das, M.A. Mamun, J. Alloys Compd. 559, 174 (2013)

    Article  CAS  Google Scholar 

  24. C. Venkataraju, G. Sathishkumar, K. Sivakumar, J. Alloys Compd. 498, 203 (2010)

    Article  CAS  Google Scholar 

  25. A. Yadav, D. Varshney, Mod. Phys. Lett. B. 31, 1750153 (2017)

    Article  CAS  Google Scholar 

  26. L.V. Gasparov, D.B. Tanner, D.B. Romero, H. Berger, G. Margaritondo, L. Forró, Phys. Rev. B Condens. Matter Mater. Phys. 62, 7939 (2000)

    Article  CAS  Google Scholar 

  27. D. Varshney, K. Verma, A. Kumar, Mater. Chem. Phys. 131, 413–419 (2011)

    Article  CAS  Google Scholar 

  28. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  29. L.G. Van Uitert, Proc. IRE. 44, 1294 (1956)

    Article  Google Scholar 

  30. K.L. Ngai, A.K. Jonscher, C.T. White, Nature 277, 185 (1979)

    Article  CAS  Google Scholar 

  31. N. Sivakumar, A. Narayanasamy, B. Jeyadevan, R.J. Joseyphus, C. Venkateswaran, J. Phys. D. Appl. Phys. 41, 245001 (2008)

    Article  Google Scholar 

  32. K. Verma, A. Kumar, D. Varshney, Curr. Appl. Phys. 13, 467 (2013)

    Article  Google Scholar 

  33. H. Inba, J. Mater. Sci. 32, 1867 (1997)

    Article  Google Scholar 

  34. N.H. Vasoya, P.K. Jha, K.G. Saija, S.N. Dolia, K.B. Zankat, K.B. Modi, J. Electron. Mater. 45, 917 (2016)

    Article  CAS  Google Scholar 

  35. H. Ye, R.B. Jackman, P. Hing, J. Appl. Phys. 94, 7878 (2003)

    Article  CAS  Google Scholar 

  36. A. Yadav, D. Varsheny, Superlattices Microstruct. 113, 153 (2018)

    Article  CAS  Google Scholar 

  37. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 085014 (2009)

    Article  Google Scholar 

  38. P. Choudhary, T. Tyagi, M.A. Dar, D. Varshney, AIP Conf. Proc. 1731, 090008 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

UGC-DAE-CSR, as an institute is acknowledged for extending its facilities. Authors acknowledge Dr. M. Gupta and Dr. V. G. Sathe of UGC-DAE CSR, Indore for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, K., Phadke, S., Das, M. et al. Synthesis and characterization of Cr substituted Mn–Zn nanoferrites with improved dielectric, electrical conductivity and impedance properties for electronic device applications. J. Korean Ceram. Soc. 59, 427–435 (2022). https://doi.org/10.1007/s43207-022-00197-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00197-x

Keywords

Navigation