Skip to main content
Log in

Effects of impurities on the slip viscosity and sintered properties of low-soda easy-sintered α-alumina

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The effects of the impurity on the rheological behavior of the aqueous slip and the resulting sintering properties of low-soda easy-sintered alumina were examined. The addition of Na+, Ca2+, Mg2+, Fe3+, and Si4+ resulted in a change in slip viscosity, where Na+ and Mg2+ increased the viscosity significantly. On the other hand, the changes in the zeta potential of the particles upon impurity addition were insignificant. The addition of Mg2+ and Fe3+ revealed a denser sintered microstructure along with more uniform grain sizes, whereas Na+, Ca2+, and Si4+ addition resulted in a lower sintered density and abnormal grain growth compared to those of the as-received powder. Overall, the impurity affected the slip viscosity and sintered microstructure of alumina significantly, while the color difference of sintered sample existed in two kinds of powders was difficult to explain only using the type and content of impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Moradkhani, H. Baharvandi, A. Naserifar, Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC nanocomposites. J. Korean Ceram. Soc. 56, 256–268 (2019). https://doi.org/10.4191/kcers.2019.56.3.01

    Article  CAS  Google Scholar 

  2. A. Fathi, H. Baharvandi, Effect of heat-treatment temperature on mechanical properties and microstructure of alumina–SiC nanocomposite. J. Korean Ceram. Soc. 57, 503–512 (2020). https://doi.org/10.1007/s43207-020-00052-x

    Article  CAS  Google Scholar 

  3. A.M. Abyzov, N.A. Khristyuk, V.V. Kozlov, F.M. Shakhov, Alumina ceramics doped with manganese titanate via applying Mn–Ti–O coatings to corundum micropowder. J. Korean Ceram. Soc. 57, 692–707 (2020). https://doi.org/10.1007/s43207-020-00076-3

    Article  CAS  Google Scholar 

  4. Y.M. Byun, G.W. Lee, K.S. Lee, J.G. Park, I.J. Kim, Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC nanocomposites. J. Korean Ceram. Soc. 58, 269–275 (2021). https://doi.org/10.1007/s43207-020-00105-1

    Article  CAS  Google Scholar 

  5. C.Y. Lee, S. Lee, J.H. Ha, J. Le, I.H. Song, K.S. Moon, Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC nanocomposites. J. Korean Ceram. Soc. 58, 495–506 (2021). https://doi.org/10.1007/s43207-021-00128-2

    Article  CAS  Google Scholar 

  6. M. Garside, Global alumina production volume 2010–2020, Statita (2021), https://www.statista.com/statistics/799525/global-alumina-production. Accessed 20 Oct 2021

  7. C. Venkatesh, R. Nerella, M.S.R. Chand, Experimental investigation of strength, durability, and microstructure of red-mud concrete. J. Korean Ceram. Soc. 57, 167–174 (2020). https://doi.org/10.1007/s43207-019-00014-y

    Article  CAS  Google Scholar 

  8. M.H. Zahir, T. Nagano, M.M. Rahman, K. Alhooshanie, S. Chowdhury, M.A. Aziz, Microstructural investigations of tubular α-Al2O3 supported γ-Al2O3 membranes and their hydrothermal improvement. J. Eur. Ceram. Soc. 37, 2637–2647 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.02.036

    Article  CAS  Google Scholar 

  9. S. Wang, X. Li, S. Wang, Y. Li, Y. Zhai, Synthesis of γ-alumina via precipitation in ethanol. Mater. Lett. 62, 3552–3554 (2008). https://doi.org/10.1016/j.matlet.2008.03.048

    Article  CAS  Google Scholar 

  10. H. Guo, W. Li, Effects of Al2O3 crystal types on morphologies, formation mechanisms of mullite and properties of porous mullite ceramics based on kyanite. J. Eur. Ceram. Soc. 38, 679–686 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.09.003

    Article  CAS  Google Scholar 

  11. A.R. Hind, S.K. Bahrgava, S.C. Grocott, The surface chemistry of Bayer process solids: a reviews. Colloids Surf. A Physicochem. Eng. Aspects 146, 359–374 (1999). https://doi.org/10.1016/S0927-7757(98)00798-5

    Article  CAS  Google Scholar 

  12. P. Mikkola, P. Ylha, E. Levanen, J.B. Rosenholm, Effect of impurities on dispersion properties of alpha-alumina powder. Ceram. Int. 30, 291–299 (2004). https://doi.org/10.1016/S0272-8842(03)00102-0

    Article  CAS  Google Scholar 

  13. N. Louet, M. Gonon, G. Fantozzi, Influence of the amount of Na2O and SiO2 on the sintering behavior and on the microstructural evolution of a Bayer alumina powder. Ceram. Int. 31, 981–987 (2005). https://doi.org/10.1016/j.ceramint.2004.10.013

    Article  CAS  Google Scholar 

  14. S.C. Park, D.W. Kim, I.W. Heo, S.J. Lee, De-soda process using silica for fabrication of low soda alumina powder. J. Korean Ceram. Soc. 52, 192–196 (2015). https://doi.org/10.4191/kcers.2015.52.3.192

    Article  CAS  Google Scholar 

  15. D.S. Suh, J.H. Cho, Investigation of the purification process of alumina by the volatilization method. Korean Inst. Chem. Eng. 33, 367–375 (1995)

    CAS  Google Scholar 

  16. Y.Y. Park, S.O. Lee, T. Tran, S.J. Kim, M.J. Kim, A study on the preparation of fine and low soda alumina. Int. J. Miner. Proc. 80, 126–132 (2006). https://doi.org/10.1016/j.minpro.2006.03.006

    Article  CAS  Google Scholar 

  17. T. Shirai, H. Watanabe, M. Fuji, M. Takahashi, Structural properties and surface characteristics on aluminum oxide powders. Nogoya Inst. Technol. Repos. Syst. 9, 23–31 (2009)

    Google Scholar 

  18. K.A. Evans, The manufacture of alumina and its use in ceramics and related applications. Key Eng. Mater. 489, 122–124 (1996)

    Google Scholar 

  19. B.E. Yoldas, Hydrolysis of aluminum alkoxides and bayerite conversion. J. Appl. Chem. Biotech. 23, 803–809 (1973). https://doi.org/10.1002/jctb.5020231103

    Article  CAS  Google Scholar 

  20. H. Kadokura, H. Umezaki, Y. Higuchi, Process for producing high purity metallic compound, US Patent No. 4650895 (1987). https://patents.google.com/patent/US4650895A/en

  21. P. Wong, M. Robinson, Chemical vapor deposition of polycrystalline Al2O3. J. Am. Ceram. Soc. 53, 617–621 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb15985.x

    Article  CAS  Google Scholar 

  22. D.M. Kim, K.B. Kim, S.Y. Yoon, Y.S. Oh, H.T. Kim, S.M. Lee, Effects of artificial pores and purity on the erosion behaviors of polycrystalline Al2O3 ceramics under fluorine plasma. J. Ceram. Soc. Jpn. 117, 863–867 (2009). https://doi.org/10.2109/jcersj2.117.863

    Article  CAS  Google Scholar 

  23. D.M. Kim, S.M. Lee, S.W. Kim, H.T. Kim, Y.S. Oh, Microstructural changes of the Al2O3 ceramics during the exposure to fluorine plasma. J. Korean Ceram. Soc. 45, 405–410 (2008). https://doi.org/10.4191/KCERS.2008.45.7.405

    Article  CAS  Google Scholar 

  24. Chem Consulting Report, Status of ceramic raw materials and policy for industrial promotion (in Korean), CMRI (2019)

  25. S.I. Bae, S. Baik, Critical concentration of MgO for the prevention of abnormal grain growth in alumina. J. Am. Ceram. Soc. 77, 2499–2504 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04634.x

    Article  CAS  Google Scholar 

  26. C.A. Handwerker, P.A. Morris, R.L. Coble, Effects of chemical inhomogeneities on grain growth and microstructure in Al2O3. J. Am. Ceram. Soc. 72, 130–136 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05965.x

    Article  CAS  Google Scholar 

  27. G. Tari, J.M.F. Ferreira, O. Lyckfeldt, Influence of magnesia on colloidal processing of alumina. J. Eur. Ceram. Soc. 17, 1341–1350 (1997). https://doi.org/10.1016/S0955-2219(96)00243-9

    Article  CAS  Google Scholar 

  28. J. Kiennemann, C. Pagnoux, T. Chartier, J.F. Baumard, Influence of impurities on dispersion properties of Bayer alumina. J. Am. Ceram. Soc. 87, 2175–2182 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb07487.x

    Article  CAS  Google Scholar 

  29. S. Sumita, H.K. Bowen, Effects of foreign oxides on grain growth and densification of sintered Al2O3, in Ceramic transactions 21, ceramics powder science II. ed. by P.A. Pask, A.G. Evans (Plenum Publishers, New York, 1988), pp. 840–847

    Google Scholar 

  30. Y. Takao, T. Hotta, M. Naito, N. Shinohara, M. Okumiya, K. Uematsu, Microstructure of alumina compact body made by slip casting. J. Eur. Ceram. Soc. 22, 397–401 (2002). https://doi.org/10.1016/S0955-2219(01)00307-7

    Article  CAS  Google Scholar 

  31. S.M. Olhero, J.M.F. Ferreira, Particle segregation phenomena occurring during the slip casting process. Ceram. Int. 28, 377–386 (2002). https://doi.org/10.1016/S0272-8842(01)00105-5

    Article  CAS  Google Scholar 

  32. T. Hotta, H. Abe, M. Naito, M. Takahashi, K. Uematsu, Z. Kato, Effect of coarse particle on the strength of alumina made by slip casting. Powder Technol. 149, 106–111 (2005). https://doi.org/10.1016/j.powtec.2004.11.004

    Article  CAS  Google Scholar 

  33. J.F. Kelso, T.A. Ferrazzoli, Effect of powder surface chemistry on the stability of concentrated aqueous dispersion of alumina. J. Am. Ceram. Soc. 72, 625–627 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06185.x

    Article  CAS  Google Scholar 

  34. C.R. Evanko, R.F. Delisio, D.A. Dzombak, J.W. Novak, Influence of aqueous chemistry on the surface charge, viscosity and stability of concentrated alumina dispersions in water. Colloids Surf. A Physicochem. Eng. Aspects 125, 95–107 (1997). https://doi.org/10.1016/S0927-7757(96)03874-5

    Article  CAS  Google Scholar 

  35. B.J. Briscoe, A.U. Kahn, P.F. Luckhan, Optimising the dispersion on an alumina suspension using commercial polyvalent electrolyte dispersants. J. Eur. Ceram. Soc. 18, 2141–2147 (1999). https://doi.org/10.1016/S0955-2219(98)00147-2

    Article  Google Scholar 

  36. J. Davies, J.G.P. Binner, The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. J. Eur. Ceram. Soc. 20, 1539–1553 (2000). https://doi.org/10.1016/S0955-2219(00)00012-1

    Article  CAS  Google Scholar 

  37. J. Cesarano, I.A. Aksay, A. Bleier, Stability of aqueous α-alumina suspensions with poly(methacrylic acid) polyelectrolyte. J. Am. Ceram. Soc. 71, 250–255 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05792.x

    Article  CAS  Google Scholar 

  38. B.P. Singh, R. Menchavez, C. Takai, M. Fuji, M. Takahashi, Stability of dispersions of colloidal particles in aqueous suspension. J. Colloid Interf. Sci. 291, 181–186 (2005). https://doi.org/10.1016/j.jcis.2005.04.091

    Article  CAS  Google Scholar 

  39. A. Sakthisabarimoorthi, M.J. Kang, D.H. Yoon, Modification of a low-soda easy-sintered α-Al2O3 powder for the application in semiconductor/display production equipment. Korean J. Chem. Eng. 38, 2541–2548 (2021). https://doi.org/10.1007/s11814-021-0915-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the i-Ceramic Manufacturing Innovation Program (20003891) and the Technology Innovation Program (20012911) funded by the Korean Ministry of Trade, Industry & Energy. The authors thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) for technical support regarding surface area measurement. The authors also gratefully acknowledge Dr. A. Sakthisabarimoorthi for performing washing of Al2O3 powder and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-Hyok Yoon.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to have influenced the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M.J., Yoon, DH. Effects of impurities on the slip viscosity and sintered properties of low-soda easy-sintered α-alumina. J. Korean Ceram. Soc. 59, 595–603 (2022). https://doi.org/10.1007/s43207-022-00192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00192-2

Keywords

Navigation