Skip to main content

Advertisement

Log in

Investigation of structural phase transition, Curie temperature and energy storage density of Ba0.97Ca0.03Ti1−xSnxO3 electroceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Three different measurement methods to determine the structural phase transitions and Curie temperature of Ba0.97Ca0.03Ti1−xSnxO3 (BCTS, x = 0.025, and 0.035 mol). electroceramics are discussed. At room temperature, both compositions reveal the tetragonal perovskite lattice symmetry as evidenced by X-ray diffraction, temperature-dependent dielectric constant and Raman active modes. The temperature-dependent dielectric study reveals TR-O at − 60 °C, TO-T at 14 °C, TT-C at 126 °C for composition x = 0.025 and TR-O at − 50 °C, TO-T at 20 °C, TT-C at 118 °C for composition x = 0.035. To evident the structural changes happening at phase transitions as well as Curie temperature the variation of polarization concerning temperature is investigated which supports the temperature-dependent dielectric and Raman spectroscopy studies. The room temperature recoverable energy storage density and efficiency of BCTS are calculated by the integral area of the polarization–electric field (P-E) hysteresis loop. The observed recoverable energy storage density is 21.80 mJ/cm3 and 32.40 mJ/cm3 with the efficiency of 43.58% and 52.25% for composition x = 0.025 and 0.035 mol., respectively. These results are having practical importance, due to the higher recoverable energy storage density and efficiency with moderate Curie temperature compared to the pure BaTiO3. Thus, it can be used as a promising novel and environmentally friendly, lead-free material, for different applications in low carbon vehicles, renewable energy technologies, integrated circuits, and for the high-temperature aerospace sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ch. Eisenschmidt, H.T. Langhammer, R. Steinhausen, G. Schmidt, Ferroelectrics 432, 103 (2012)

    Article  CAS  Google Scholar 

  2. K. C. Kao, Dielectric Phenomenon in Solids with emphasis on physical concepts of electronic processes, Elsevier New York, (2004).

  3. E. Chandrakala, J. P. Praveen, A. Kumar, A. R. James, D. Das, J. Am. Ceram. Soc. 99 11 3659 (2016).

  4. B. Rawal, P. Dixit, N.N. Wathore, B. Praveenkumar, H.S. Panda, Bull. Mater. Sci. 43, 82 (2020)

    Article  CAS  Google Scholar 

  5. D. Shihua, S. Tianxiu, Y. Xiaojing, L. Guanghua, Ferroelectrics 402, 55 (2010)

    Article  Google Scholar 

  6. A. K. Nath, N. Medhi, Bull. Mater. Sci. 35 5 847 (2012).

  7. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel, Appl. Phys. Rev. 4, 041305 (2017).

  8. P. S. Kadhane, B. G. Baraskar, T. C. Darvade, A. R. James, R. C. Kambale, Solid State Commun. 306 113797 (2020).

  9. M. A. Ansari, K. Sreenivas, Mater. Lett. 264 127294 (2020).

  10. J. Wu, W. Mao, Z. Wu, Y. Jia, Mater. Lett. 166, 75 (2016)

    Article  Google Scholar 

  11. V. S. Puli, D. K. Pradhan, S. Adireddy, R. Martínez, P. Silwal, J. F. Scott, C. V. Ramana, D. B. Chrisey, R. S. Katiyar, J. Phys. D: Appl. Phys. 48 355502 (2015).

  12. Y. Zhang, W. Li, W. Cao, Y. Feng, Y. Qiao, T. Zhang, W. Fei, Appl. Phys. Lett. 110, 243901 (2017).

  13. S. Markovi, M. Mitri, N. Cvjeticanin, D. Uskokovic, J. Eur. Ceram. Soc. 27, 505–509 (2007)

    Article  Google Scholar 

  14. N. Chaiyo, D.P. Cann, N. Vittayakorn, Mater. Design 133, 109 (2017)

    Article  CAS  Google Scholar 

  15. M. Khan, A. Mishra, J. Shukla, P. Sharma, AIP Conference Proceedings 2100, 020138 (2019).

  16. T. Hoshina, S. Hatta, H. Takeda, T. Tsurumi, Jpn. J. Appl. Phys. 57 0902BB (2018).

  17. A. Kalyani, K. Brajesh, A. Senyshyn, R. Ranjan, Appl. Phys. Lett. 104 252906 (2014).

  18. S. J. Kuang, X. G. Tang, l. Y. Li, Y. P. Jiang, Q. X. Liu, Scripta Materialia 61 68 (2009).

  19. I. Ramovatar, S. Coondoo, N. Satapathy, Panwar. Physica B 553, 68 (2019)

    Article  CAS  Google Scholar 

  20. J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, D. Das, Curr. Appl. Phys. 14, 396–402 (2014)

    Article  Google Scholar 

  21. K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  22. L. Qiang, N. Li, P. Haijun, Z. Nianshun, F. Huiqing, Ceram. Int. 45, 1676 (2019)

    Article  Google Scholar 

  23. C.H. Perry, D.B. Hall, Phys. Rev. Lett. 15, 700 (1965)

    Article  CAS  Google Scholar 

  24. Hiroshi Ishiwara, journal of Nanoscience and Nanotechnology, Vol. 12, 7619–7627, 2012.

  25. Y. Mnyukh, American Journal of Condensed Matter Physics 3(5) 25 142–150 (2013).

  26. P. Jaita, A. Watcharapasorn, N. Kumar, D.P. Cann, S. Jiansirisomboon, Electron. Mater. Lett. 11, 828 (2015)

    Article  CAS  Google Scholar 

  27. G. Jian, Y. Jiao, Q. Meng, Z. Wei, J. Zhang, C. Yan, K. S. Moon, C.P. Wong, Communications materials, doi.org/https://doi.org/10.1038/s43246-020-00092-0.

  28. F. Akram, M. Sheeraz, A. Hussain, W. Kim, T.H. Kim, C.W. Ahn, Ceram. Int. 47, 23488–23496 (2021)

    Article  CAS  Google Scholar 

  29. Y. Huang, F. Li, H. Hao, F. Xia, H. Liu, S. Zhang, J. Materiomics 5, 385–393 (2019)

    Article  Google Scholar 

  30. M. Zhoua, R. Liang, Z. Zhou, X. Dong, j. ceramint, 2019, 09, 265.

  31. T. Garg, V. Annapureddy, K.C. Sekhar, D.Y. Jeong, N. Dabra, J.S. Hundal, Polym. Compos. 41(12), 5305–5316 (2020)

    Article  CAS  Google Scholar 

  32. Z. Zhang, S. Luo, S. Yu, Z. Guan, R. Sun, C.P. Wong, Mater. Des. 142, 106–113 (2018)

    Article  CAS  Google Scholar 

  33. A. Kumar, K.C.J. Raju, J. Ryu, A.R. James, Appl. Phys. A 126, 175 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RCK thankfully acknowledges the Science and Engineering Research Board (SERB), Government of India (File No. EMR/2016/001750) for providing the research funds under the Extra Mural Research Funding (Individual Centric) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul C. Kambale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhane, P.S., Baraskar, B.G., Darvade, T.C. et al. Investigation of structural phase transition, Curie temperature and energy storage density of Ba0.97Ca0.03Ti1−xSnxO3 electroceramics. J. Korean Ceram. Soc. 59, 578–588 (2022). https://doi.org/10.1007/s43207-022-00189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00189-x

Keywords

Navigation