Skip to main content
Log in

A review of the simulation studies on the bulk growth of silicon carbide single crystals

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) is a wide-bandgap semiconductor material that is viable for the next generation of high-performance and high-power electrical devices. In general, bulk SiC single crystals have been grown at very high temperatures in a closed reactor; hence, the growth process is difficult to monitor using in situ techniques. Consequently, computational simulations have been utilized to understand, validate, and design crystal growth processes. In this review, we summarize the results of computational simulations of SiC bulk crystal growth using three primary methods: physical vapor transport, high-temperature chemical vapor deposition, and top-seeded solution growth. The simulations reveal the effects of physicochemical phenomena, such as temperature distribution, fluid flow, and chemical reactions, on crystal growth behaviors. Process parameters for high-quality and high-yield crystal growth have been realized with the aid of simulations. Furthermore, recent advances in machine learning techniques for accelerating the design of crystal growth parameters and enabling real-time parameter optimization are introduced. Overall, computational simulations are a crucial tool for the development of SiC bulk crystal growth and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

\({\varvec{H}}\) :

Magnetic field intensity, A/m

\({\varvec{B}}\) :

Magnetic flux density, T

\({\varvec{A}}\) :

Magnetic potential vector, Vs/m

\(\omega\) :

Angular frequency, rad/s

\({\varvec{E}}\) :

Electric field intensity, V/m

\({\varvec{D}}\) :

Electric flux density, C/m2

\({\varvec{J}}\) :

Electric current density, A/m2

\(\sigma\) :

Electrical conductivity, S/m

\(i\) :

Imaginary unit

\(\mathrm{Re}\) :

Real part of a complex number

\(Q\) :

Heat, J

\(\rho\) :

Density, kg/m3

\({C}_{\mathrm{p}}\) :

Heat capacity, J/(kg·K)

\(T\) :

Temperature, K

\(k\) :

Thermal conductivity, W/(m·K)

\(G\) :

Surface irradiation, W/m2

\({G}_{\mathrm{m}}\) :

Mutual surface irradiation, W/m2

\({F}_{\mathrm{amb}}\) :

Ambient view factor

\({\varepsilon }_{\mathrm{s}}\) :

Surface emissivity

\({\sigma }_{\mathrm{sb}}\) :

Stefan–Boltzmann constant, W/(m2K4)

\({T}_{\mathrm{amb}}\) :

Ambient temperature, K

\(J\) :

Surface radiosity, W/m2

\({\varvec{n}}\) :

Radiation direction vector

\({\varvec{u}}\) :

Velocity field, m/s

\(p\) :

Pressure, Pa

\(t\) :

Time, s

\({\varvec{\tau}}\) :

Viscous stress, Pa

\({{\varvec{F}}}_{\mathbf{e}\mathbf{x}\mathbf{t}}\) :

External force density, N/m3

\(D\) :

Diffusion coefficient, m2/s

\(c\) :

Concentration, mol/m3

\({G}_{\mathrm{rate}}\) :

Growth rate, m/s

\(M\) :

Molar mass, g/mol

\({J}_{\mathrm{species}}\) :

Mass flux, mol/m2s

\(r\) :

Radius, m

\(S\) :

Area, m2

\(K\) :

Equilibrium constant

\(P\) :

Partial pressure, Pa

\(R\) :

Molar gas constant, J/molK

\({S}_{\mathrm{eff}}\) :

Effective vapor supersaturation

\(A\) :

Pre-exponential factor

References

  1. Z.C. Feng, SiC power materials devices and applications (Springer, Berlin, 2004). (ISBN: 978-3-662-09877-6)

    Book  Google Scholar 

  2. Z.C. Feng, J.H. Zhao (eds.), Silicon carbide: materials, processing, and devices (Taylor & Francis, New York, 2004). (ISBN: 978-1-59169-023-8)

    Google Scholar 

  3. S.E. Saddow, A. Agarwal (eds.), Advances in silicon carbide processing and applications (Artech House, Boston, 2004). (ISBN: 978-1-58053-740-7)

    Google Scholar 

  4. M.B.J. Wijesundara, R. Azevedo, Silicon carbide microsystems for harsh environments (Springer, New York, 2011). (ISBN: 978-1-4419-7120-3)

    Book  Google Scholar 

  5. T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications (John Wiley & Sons Singapore Pte Ltd, Singapore, 2014). (ISBN: 978-1-118-31352-7)

    Book  Google Scholar 

  6. D.-H. Yoon, I.E. Reimanis, A review on the joining of SiC for high-temperature applications. J. Korean Ceram. Soc. 57, 246–270 (2020). https://doi.org/10.1007/s43207-020-00021-4

    Article  CAS  Google Scholar 

  7. E.G. Acheson, Carborundum: its history, manufacture and uses. J. Frankl. Inst. 136, 194–203 (1893). https://doi.org/10.1016/0016-0032(93)90311-H

    Article  Google Scholar 

  8. G.R. Fisher, P. Barnes, Towards a unified view of polytypism in silicon carbide. Philos. Mag. B 61, 217–236 (1990). https://doi.org/10.1080/13642819008205522

    Article  CAS  Google Scholar 

  9. F. Bechstedt, P. Käckell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J. Furthmüller, Polytypism and properties of silicon carbide. Phys. Status Solidi B 202, 35–62 (1997). https://doi.org/10.1002/1521-3951(199707)202:1%3c35::AID-PSSB35%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  10. G.N. Philip, Silicon carbide technology, in VLSI Handb., 2nd edn., ed. by W.-K. Chen (CRC Press, Boca Raton, 2007), p. 5.1-5.34

    Google Scholar 

  11. A. Elasser, T.P. Chow, Silicon carbide benefits and advantages for power electronics circuits and systems. Proc. IEEE 90, 969–986 (2002). https://doi.org/10.1109/JPROC.2002.1021562

    Article  CAS  Google Scholar 

  12. Wolfspeed®, HPSI—semi-insulating SiC substrates (2021). https://www.wolfspeed.com/products/materials/hpsi-semi-insulating-sic-substrates. Accessed 1 Nov 2021

  13. II–VI Incorporated, Silicon carbide (SiC) substrates for power electronics (2021). https://ii-vi.com/product/sic-substrates/. Accessed 1 Nov 2021

  14. Y. Tokuda, J. Kojima, K. Hara, H. Tsuchida, S. Onda, 4H-SiC bulk growth using high-temperature gas source method. Mater. Sci. Forum 778–780, 51–54 (2014). https://doi.org/10.4028/www.scientific.net/MSF.778-780.51

    Article  CAS  Google Scholar 

  15. N. Hoshino, I. Kamata, Y. Tokuda, E. Makino, J. Kojima, H. Tsuchida, Fast 4H-SiC crystal growth by high-temperature gas source method. Mater. Sci. Forum 778–780, 55–58 (2014). https://doi.org/10.4028/www.scientific.net/MSF.778-780.55

    Article  CAS  Google Scholar 

  16. A.R. Powell, J.J. Sumakeris, Y. Khlebnikov, M.J. Paisley, R.T. Leonard, E. Deyneka, S. Gangwal, J. Ambati, V. Tsevtkov, J. Seaman, A. McClure, C. Horton, O. Kramarenko, V. Sakhalkar, M. O’Loughlin, A.A. Burk, J.Q. Guo, M. Dudley, E. Balkas, Bulk growth of large area SiC crystals. Mater. Sci. Forum 858, 5–10 (2016). https://doi.org/10.4028/www.scientific.net/MSF.858.5

    Article  Google Scholar 

  17. T. Mitani, N. Komatsu, T. Takahashi, T. Kato, T. Ujihara, Y. Matsumoto, K. Kurashige, H. Okumura, 4H-SiC growth from Si-Cr-C solution under Al and N Co-doping conditions. Mater. Sci. Forum 821–823, 9–13 (2015). https://doi.org/10.4028/www.scientific.net/MSF.821-823.9

    Article  Google Scholar 

  18. K. Kusunoki, N. Okada, K. Kamei, K. Moriguchi, H. Daikoku, M. Kado, H. Sakamoto, T. Bessho, T. Ujihara, Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique. J. Cryst. Growth 395, 68–73 (2014). https://doi.org/10.1016/j.jcrysgro.2014.03.006

    Article  CAS  Google Scholar 

  19. Yu.M. Tairov, V.F. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth 43, 209–212 (1978). https://doi.org/10.1016/0022-0248(78)90169-0

    Article  CAS  Google Scholar 

  20. O. Kordina, C. Hallin, A. Ellison, A.S. Bakin, I.G. Ivanov, A. Henry, R. Yakimova, M. Touminen, A. Vehanen, E. Janzén, High temperature chemical vapor deposition of SiC. Appl. Phys. Lett. 69, 1456 (1996). https://doi.org/10.1063/1.117613

    Article  CAS  Google Scholar 

  21. D.H. Hofmann, M.H. Müller, Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Mater. Sci. Eng. B 61–62, 29–39 (1999). https://doi.org/10.1016/S0921-5107(98)00440-1

    Article  Google Scholar 

  22. H. Lin, A. Villamor, Power SiC 2018: materials, devices and applications. Yole Development (2018). http://www.yole.fr/

  23. A. Figueras, S. Garelik, R. Rodríguez-Clemente, B. Armas, C. Combescure, C. Dupuy, A morphological and structural study of SiC layers obtained by LPCVD using tetramethylsilane. J. Cryst. Growth 110, 528–542 (1991). https://doi.org/10.1016/0022-0248(91)90290-L

    Article  CAS  Google Scholar 

  24. Y.L. Lee, J.M. Sanchez, Simulation of chemical-vapor-deposited silicon carbide for a cold wall vertical reactor. J. Cryst. Growth 178, 505–512 (1997). https://doi.org/10.1016/S0022-0248(97)00090-0

    Article  CAS  Google Scholar 

  25. Y.H. Seo, Effects of experimental parameters on void formation in the growth of 3C-SiC thin film on Si substrate. J. Electrochem. Soc. 145, 292 (1998). https://doi.org/10.1149/1.1838249

    Article  CAS  Google Scholar 

  26. Y. Avigal, M. Schieber, R. Levin, The growth of hetero-epitaxial SiC films by pyrolysis of various alkyl-silicon compounds. J. Cryst. Growth 24–25, 188–192 (1974). https://doi.org/10.1016/0022-0248(74)90302-9

    Article  Google Scholar 

  27. A.M. Wrobel, A. Walkiewicz-Pietrzykowska, M. Ahola, I.J. Vayrynen, F.J. Ferrer-Fernandez, A.R. Gonzalez-Elipe, Growth mechanism and chemical structure of amorphous hydrogenated silicon carbide (a-SiC:H) films formed by remote hydrogen microwave plasma CVD from a triethylsilane precursor: part 1. Chem. Vap. Depos. 15, 39–46 (2009). https://doi.org/10.1002/cvde.200806726

    Article  CAS  Google Scholar 

  28. C. Lu, L. Cheng, C. Zhao, L. Zhang, Y. Xu, Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen. Appl. Surf. Sci. 255, 7495–7499 (2009). https://doi.org/10.1016/j.apsusc.2009.03.069

    Article  CAS  Google Scholar 

  29. S.-M. Jeong, K.-H. Kim, Y.J. Yoon, M.-H. Lee, W.-S. Seo, Thermodynamic approach to the synthesis of silicon carbide using tetramethylsilane as the precursor at high temperature. J. Cryst. Growth 357, 48–52 (2012). https://doi.org/10.1016/j.jcrysgro.2012.07.034

    Article  CAS  Google Scholar 

  30. S.-M. Jeong, D.-H. Nam, B.G. Kim, J.-Y. Yoon, M.-H. Lee, K.-H. Kim, Y.J. Yoon, W.-S. Seo, Synthesis of α-SiC from tetramethylsilane by chemical vapor deposition at high temperature. Appl. Phys. Express 7, 025501 (2014). https://doi.org/10.7567/APEX.7.025501

    Article  CAS  Google Scholar 

  31. D.-H. Nam, B.G. Kim, J.-Y. Yoon, M.-H. Lee, W.-S. Seo, S.-M. Jeong, C.-W. Yang, W.-J. Lee, High-temperature chemical vapor deposition for SiC single crystal bulk growth using tetramethylsilane as a precursor. Cryst. Growth Des. 14, 5569–5574 (2014). https://doi.org/10.1021/cg5008186

    Article  CAS  Google Scholar 

  32. B.G. Kim, J.-Y. Yoon, C.-H. Yoo, D.-H. Nam, M.-H. Lee, W.-S. Seo, S.-M. Jeong, Condensation of vapor species at the outlets in high temperature chemical vapor deposition using tetramethylsilane as a precursor for SiC bulk growth. CrystEngComm 17, 3148–3152 (2015). https://doi.org/10.1039/C4CE02472A

    Article  CAS  Google Scholar 

  33. J.-Y. Yoon, B. Geun Kim, D.-H. Nam, C.-H. Yoo, M.-H. Lee, W.-S. Seo, Y.-G. Shul, W.-J. Lee, S.-M. Jeong, Design of a high temperature chemical vapor deposition reactor in which the effect of the condensation of exhaust gas in the outlet is minimized using computational modeling. J. Cryst. Growth 435, 84–90 (2016). https://doi.org/10.1016/j.jcrysgro.2015.11.039

    Article  CAS  Google Scholar 

  34. K.-H. Kim, K.-J. Hwang, H. Lee, S.-M. Jeong, M.-H. Lee, S.-Y. Bae, Improvement of adhesion properties of glass prepared using SiC-deposited graphite mold via low-temperature chemical vapor deposition. J. Korean Ceram. Soc. 57, 112–118 (2020). https://doi.org/10.1007/s43207-019-00010-2

    Article  CAS  Google Scholar 

  35. T. Ujihara, S. Kozawa, K. Seki, Y. Yamamoto, S. Harada, Conversion mechanism of threading screw dislocation during SiC solution growth. Mater. Sci. Forum 717–720, 351–354 (2012). https://doi.org/10.4028/www.scientific.net/MSF.717-720.351

  36. S. Harada, Y. Yamamoto, K. Seki, A. Horio, M. Tagawa, T. Ujihara, Different behavior of threading edge dislocation conversion during the solution growth of 4H–SiC depending on the Burgers vector. Acta Mater. 81, 284–290 (2014). https://doi.org/10.1016/j.actamat.2014.08.027

    Article  CAS  Google Scholar 

  37. C.D. Stinespring, J.C. Wormhoudt, Gas phase kinetics analysis and implications for silicon carbide chemical vapor deposition. J. Cryst. Growth 87, 481–493 (1988). https://doi.org/10.1016/0022-0248(88)90096-6

    Article  CAS  Google Scholar 

  38. S. Harada, G. Hatasa, K. Murayama, T. Kato, M. Tagawa, T. Ujihara, Solvent design for high-purity SiC solution growth. Mater. Sci. Forum 897, 32–35 (2017). https://doi.org/10.4028/www.scientific.net/MSF.897.32

    Article  Google Scholar 

  39. Q.-S. Chen, H. Zhang, V. Prasad, C.M. Balkas, N.K. Yushin, Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals. J. Heat Transf. 123, 1098–1109 (2001). https://doi.org/10.1115/1.1409263

    Article  CAS  Google Scholar 

  40. S.Y. Karpov, Y.N. Makarov, M.S. Ramm, Simulation of sublimation growth of SiC single crystals. Phys. Status Solidi B 202, 201–220 (1997). https://doi.org/10.1002/1521-3951(199707)202:1%3c201::AID-PSSB201%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  41. Y.E. Egorov, A.O. Galyukov, S.G. Gurevich, Y.N. Makarov, E.N. Mokhov, M.G. Ramm, M.S. Ramm, A.D. Roenkov, A.S. Segal, Y.A. Vodakov, A.N. Vorob’ev, A.I. Zhmakin, Modeling analysis of temperature field and species transport inside the system for sublimation growth of SiC in tantalum container. Mater. Sci. Forum 264–268, 61–64 (1998). https://doi.org/10.4028/www.scientific.net/MSF.264-268.61

  42. M.S. Ramm, E.N. Mokhov, S.E. Demina, M.G. Ramm, A.D. Roenkov, Yu.A. Vodakov, A.S. Segal, A.N. Vorob’ev, S.Y. Karpov, A.V. Kulik, Yu.N. Makarov, Optimization of sublimation growth of SiC bulk crystals using modeling. Mater. Sci. Eng. B 61–62, 107–112 (1999). https://doi.org/10.1016/S0921-5107(98)00456-5

  43. M. Selder, L. Kadinski, Yu. Makarov, F. Durst, P. Wellmann, T. Straubinger, D. Hofmann, S. Karpov, M. Ramm, Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT. J. Cryst. Growth 211, 333–338 (2000). https://doi.org/10.1016/S0022-0248(99)00853-2

    Article  CAS  Google Scholar 

  44. J. Steiner, M. Arzig, A. Denisov, P.J. Wellmann, Impact of varying parameters on the temperature gradients in 100 mm silicon carbide bulk growth in a computer simulation validated by experimental results. Cryst. Res. Technol. 55, 1900121 (2020). https://doi.org/10.1002/crat.201900121

    Article  CAS  Google Scholar 

  45. J.-Y. Yan, Q.-S. Chen, Y.-N. Jiang, H. Zhang, Improvement of the thermal design in the SiC PVT growth process. J. Cryst. Growth 385, 34–37 (2014). https://doi.org/10.1016/j.jcrysgro.2013.02.031

    Article  CAS  Google Scholar 

  46. J. Drowart, G. De Maria, M.G. Inghram, Thermodynamic study of SiC utilizing a mass spectrometer. J. Chem. Phys. 29, 1015–1021 (1958). https://doi.org/10.1063/1.1744646

    Article  CAS  Google Scholar 

  47. S.K. Lilov, Study of the equilibrium processes in the gas phase during silicon carbide sublimation. Mater. Sci. Eng. B 21, 65–69 (1993). https://doi.org/10.1016/0921-5107(93)90267-Q

    Article  Google Scholar 

  48. K. Ariyawong, C. Chatillon, E. Blanquet, J.-M. Dedulle, D. Chaussende, A first step toward bridging silicon carbide crystal properties and physical chemistry of crystal growth. CrystEngComm 18, 2119–2124 (2016). https://doi.org/10.1039/C5CE02480C

    Article  CAS  Google Scholar 

  49. B. Gao, X.J. Chen, S. Nakano, S. Nishizawa, K. Kakimoto, Analysis of SiC crystal sublimation growth by fully coupled compressible multi-phase flow simulation. J. Cryst. Growth 312, 3349–3355 (2010). https://doi.org/10.1016/j.jcrysgro.2010.08.032

    Article  CAS  Google Scholar 

  50. D. Nakamura, Simple and quick enhancement of SiC bulk crystal growth using a newly developed crucible material. Appl. Phys. Express 9, 055507 (2016). https://doi.org/10.7567/APEX.9.055507

    Article  CAS  Google Scholar 

  51. D. Hofmann, M. Bickermann, R. Eckstein, M. Kölbl, S.G. Müller, E. Schmitt, A. Weber, A. Winnacker, Sublimation growth of silicon carbide bulk crystals: experimental and theoretical studies on defect formation and growth rate augmentation. J. Cryst. Growth 198–199, 1005–1010 (1999). https://doi.org/10.1016/S0022-0248(98)01212-3

    Article  Google Scholar 

  52. H. Das, S. Sunkari, J. Justice, H. Pham, G. Park, Y.H. Seo, Statistical analysis of killer and non-killer defects in SiC and the impacts to device performance. Mater. Sci. Forum 1004, 458–463 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1004.458

    Article  Google Scholar 

  53. E.Y. Tupitsyn, A. Arulchakkaravarthi, R.V. Drachev, T.S. Sudarshan, Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth. J. Cryst. Growth 299, 70–76 (2007). https://doi.org/10.1016/j.jcrysgro.2006.10.258

    Article  CAS  Google Scholar 

  54. X. Liu, B. Chen, L.-X. Song, E.-W. Shi, Z.-Z. Chen, The behavior of powder sublimation in the long-term PVT growth of SiC crystals. J. Cryst. Growth 312, 1486–1490 (2010). https://doi.org/10.1016/j.jcrysgro.2010.01.029

    Article  CAS  Google Scholar 

  55. A.V. Kulik, M.V. Bogdanov, SYu. Karpov, M.S. Ramm, Y.N. Makarov, Theoretical analysis of the mass transport in the powder charge in long-term bulk SiC growth. Mater. Sci. Forum 457–460, 67–70 (2004). https://doi.org/10.4028/www.scientific.net/MSF.457-460.67

    Article  Google Scholar 

  56. R. Ma, H. Zhang, V. Prasad, M. Dudley, Growth kinetics and thermal stress in the sublimation growth of silicon carbide. Cryst. Growth Des. 2, 213–220 (2002). https://doi.org/10.1021/cg015572p

    Article  CAS  Google Scholar 

  57. I.A. Zhmakin, A.V. Kulik, SYu. Karpov, S.E. Demina, M.S. Ramm, Yu.N. Makarov, Evolution of thermoelastic strain and dislocation density during sublimation growth of silicon carbide. Diam. Relat. Mater. 9, 446–451 (2000). https://doi.org/10.1016/S0925-9635(99)00307-6

    Article  CAS  Google Scholar 

  58. M. Selder, L. Kadinski, F. Durst, T.L. Straubinger, P.J. Wellmann, D. Hofmann, Numerical simulation of thermal stress formation during PVT-growth of SiC bulk crystals. Mater. Sci. Forum 353–356, 65–68 (2001). https://doi.org/10.4028/www.scientific.net/MSF.353-356.65

    Article  Google Scholar 

  59. E. Schmitt, M. Rasp, A.D. Weber, M. Kölbl, R. Eckstein, L. Kadinski, M. Selder, Defect reduction in sublimation grown silicon carbide crystals by adjustment of thermal boundary conditions. Mater. Sci. Forum 353–356, 15–20 (2001). https://doi.org/10.4028/www.scientific.net/MSF.353-356.15

    Article  Google Scholar 

  60. A.S. Jordan, R. Caruso, A.R. VonNeida, J.W. Nielsen, A comparative study of thermal stress induced dislocation generation in pulled GaAs, InP, and Si crystals. J. Appl. Phys. 52, 3331–3336 (1981). https://doi.org/10.1063/1.329154

    Article  CAS  Google Scholar 

  61. Y. Kang, C.-H. Yoo, D.-H. Nam, M.-H. Lee, W.-S. Seo, S. Hong, S.-M. Jeong, Thermodynamic design of a high temperature chemical vapor deposition process to synthesize α-SiC in Si-C-H and Si-C-H-Cl systems. J. Cryst. Growth 485, 78–85 (2018). https://doi.org/10.1016/j.jcrysgro.2018.01.001

    Article  CAS  Google Scholar 

  62. Y. Kito, E. Makino, K. Ikeda, M. Nagakubo, S. Onda, SiC HTCVD simulation modified by sublimation etching. Mater. Sci. Forum 527–529, 107–110 (2006). https://doi.org/10.4028/www.scientific.net/MSF.527-529.107

    Article  Google Scholar 

  63. N. Hoshino, I. Kamata, Y. Tokuda, E. Makino, N. Sugiyama, J. Kojima, H. Tsuchida, High-speed, high-quality crystal growth of 4H-SiC by high-temperature gas source method. Appl. Phys. Express 7, 065502 (2014). https://doi.org/10.7567/APEX.7.065502

    Article  CAS  Google Scholar 

  64. J. Kojima, Y. Tokuda, E. Makino, N. Sugiyama, N. Hoshino, I. Kamata, H. Tsuchida, Developing technologies of SiC gas source growth method. Mater. Sci. Forum 858, 23–28 (2016). https://doi.org/10.4028/www.scientific.net/MSF.858.23

    Article  Google Scholar 

  65. Y. Tokuda, N. Hoshino, H. Kuno, H. Uehigashi, T. Okamoto, T. Kanda, N. Ohya, I. Kamata, H. Tsuchida, Fast 4H-SiC bulk growth by high-temperature gas source method. Mater. Sci. Forum 1004, 5–13 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1004.5

    Article  Google Scholar 

  66. Ö. Danielsson, A. Henry, E. Janzén, Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers. J. Cryst. Growth 243, 170–184 (2002). https://doi.org/10.1016/S0022-0248(02)01486-0

    Article  CAS  Google Scholar 

  67. J. Kojima, E. Makino, Y. Tokuda, N. Sugiyama, N. Hoshino, H. Tsuchida, High-speed and long-length SiC growth using high-temperature gas source method. Mater. Sci. Forum 821–823, 104–107 (2015). https://doi.org/10.4028/www.scientific.net/MSF.821-823.104

    Article  Google Scholar 

  68. M.A. Fanton, B.E. Weiland, D.W. Snyder, J.M. Redwing, Thermodynamic equilibrium limitations on the growth of SiC by halide chemical vapor deposition. J. Appl. Phys. 101, 014903 (2007). https://doi.org/10.1063/1.2399882

    Article  CAS  Google Scholar 

  69. Y.N. Makarov, R.A. Talalaev, A.N. Vorob’ev, M.S. Ramm, M.V. Bogdanov, Computational analysis of SiC HTCVD from silicon tetrachloride and propane. Mater. Sci. Forum 600–603, 51–53 (2009). https://doi.org/10.4028/www.scientific.net/MSF.600-603.51

  70. Y. Kito, E. Makino, K. Inaba, N. Hosokawa, H. Hiramatsu, J. Hasegawa, S. Onda, H. Tsuboi, H. Takaba, A. Miyamoto, Simulation study for HTCVD of SiC using first-principles calculation and thermo-fluid analysis. Mater. Sci. Forum 600–603, 47–50 (2009). https://doi.org/10.4028/www.scientific.net/MSF.600-603.47

    Article  Google Scholar 

  71. J.-W. Seo, K. Choi, Application of CFD simulation to silicon carbide deposition for nozzles with funnel. J. Korean Ceram. Soc. 58, 184–191 (2021). https://doi.org/10.1007/s43207-020-00082-5

    Article  CAS  Google Scholar 

  72. Centre for Research in Computational Thermochemistry, FactSage database documentation (2021). https://www.crct.polymtl.ca/fact/documentation/. Accessed 7 Sept 2021

  73. T. Okamoto, T. Kanda, Y. Tokuda, N. Ohya, K. Betsuyaku, N. Hoshino, I. Kamata, H. Tsuchida, Development of 150-mm 4H-SiC substrates using a high-temperature chemical vapor deposition method. Mater. Sci. Forum 1004, 14–19 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1004.14

    Article  Google Scholar 

  74. F. Mercier, J.-M. Dedulle, D. Chaussende, M. Pons, Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth. J. Cryst. Growth 312, 155–163 (2010). https://doi.org/10.1016/j.jcrysgro.2009.10.007

    Article  CAS  Google Scholar 

  75. T. Yamamoto, Y. Okano, T. Ujihara, S. Dost, Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation. J. Cryst. Growth 470, 75–88 (2017). https://doi.org/10.1016/j.jcrysgro.2017.04.016

    Article  CAS  Google Scholar 

  76. M.-T. Ha, Y.-J. Yu, Y.-J. Shin, S.-Y. Bae, M.-H. Lee, C.-J. Kim, S.-M. Jeong, Flow modification enhancing the growth rate in top seeded solution growth of SiC crystals. RSC Adv. 9, 26327–26337 (2019). https://doi.org/10.1039/C9RA04930D

    Article  CAS  Google Scholar 

  77. K. Ariyawong, J.M. Dedulle, D. Chaussende, Electromagnetic enhancement of carbon transport in SiC solution growth process: a numerical modeling approach. Mater. Sci. Forum 778–780, 71–74 (2014). https://doi.org/10.4028/www.scientific.net/MSF.778-780.71

    Article  CAS  Google Scholar 

  78. F. Mercier, S. Nishizawa, Solution growth of SiC from silicon melts: Influence of the alternative magnetic field on fluid dynamics. J. Cryst. Growth 318, 385–388 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.022

    Article  CAS  Google Scholar 

  79. T. Yamamoto, N. Adkar, Y. Okano, T. Ujihara, S. Dost, Numerical investigation of the transport phenomena occurring in the growth of SiC by the induction heating TSSG method. J. Cryst. Growth 474, 50–54 (2017). https://doi.org/10.1016/j.jcrysgro.2016.12.086

    Article  CAS  Google Scholar 

  80. L. Wang, T. Horiuchi, A. Sekimoto, Y. Okano, T. Ujihara, S. Dost, Three-dimensional numerical analysis of Marangoni convection occurring during the growth process of SiC by the RF-TSSG method. J. Cryst. Growth 520, 72–81 (2019). https://doi.org/10.1016/j.jcrysgro.2019.05.017

    Article  CAS  Google Scholar 

  81. J. Lefebure, J.-M. Dedulle, T. Ouisse, D. Chaussende, Modeling of the growth rate during top seeded solution growth of SiC using pure silicon as a solvent. Cryst. Growth Des. 12, 909–913 (2012). https://doi.org/10.1021/cg201343w

    Article  CAS  Google Scholar 

  82. T. Narumi, S. Kawanishi, T. Yoshikawa, K. Kusunoki, K. Kamei, H. Daikoku, H. Sakamoto, Thermodynamic evaluation of the C-Cr–Si, C–Ti–Si, and C–Fe–Si systems for rapid solution growth of SiC. J. Cryst. Growth 408, 25–31 (2014). https://doi.org/10.1016/j.jcrysgro.2014.08.027

    Article  CAS  Google Scholar 

  83. S. Kawanishi, Y. Nagamatsu, T. Yoshikawa, H. Shibata, Availability of Cr-rich Cr-Si solvent for rapid solution growth of 4H-SiC. J. Cryst. Growth 549, 125877 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125877

    Article  CAS  Google Scholar 

  84. J.E. Lee, B.G. Kim, J.-Y. Yoon, M.-T. Ha, M.-H. Lee, Y. Kim, W.-S. Seo, H.-J. Choi, W.-J. Lee, S.-M. Jeong, The role of an SiC interlayer at a graphite–silicon liquid interface in the solution growth of SiC crystals. Ceram. Int. 42, 11611–11618 (2016). https://doi.org/10.1016/j.ceramint.2016.04.060

    Article  CAS  Google Scholar 

  85. S.H. Choi, Y.G. Kim, Y.J. Shin, S.M. Jeong, M.H. Lee, C.Y. Lee, J.M. Choi, M.S. Park, Y.S. Jang, W.J. Lee, The effect of stepped wall of the graphite crucible in top seeded solution growth of SiC crystal. Mater. Sci. Forum 924, 27–30 (2018). https://doi.org/10.4028/www.scientific.net/MSF.924.27

    Article  Google Scholar 

  86. M.-T. Ha, Y.-J. Shin, M.-H. Lee, C.-J. Kim, S.-M. Jeong, Effects of the temperature gradient near the crystal-melt interface in top seeded solution growth of SiC crystal. Phys. Status Solidi A 215, 1701017 (2018). https://doi.org/10.1002/pssa.201701017

    Article  CAS  Google Scholar 

  87. M.-T. Ha, Y.-J. Shin, S.-Y. Bae, S.-Y. Park, S.-M. Jeong, Effect of hot-zone aperture on the growth behavior of SiC single crystal produced via top-seeded solution growth method. J. Korean Ceram. Soc. 56, 589–595 (2019). https://doi.org/10.4191/kcers.2019.56.6.07

    Article  CAS  Google Scholar 

  88. T.-Y. Park, Y.-J. Shin, M.-T. Ha, S.-Y. Bae, Y.-S. Lim, S.-M. Jeong, Effect of radiation heat transfer on the control of temperature gradient in the induction heating furnace for growing single crystals. J. Korean Inst. Electr. Electron. Mater. Eng. 32, 522–527 (2019). https://doi.org/10.4313/JKEM.2019.32.6.522

    Article  Google Scholar 

  89. Y.G. Kim, S.H. Choi, Y.J. Shin, S.M. Jeong, M.H. Lee, C.Y. Lee, J.M. Choi, M.S. Park, Y.S. Jang, W.J. Lee, Modification of crucible shape in top seeded solution growth of SiC crystal. Mater. Sci. Forum 924, 47–50 (2018). https://doi.org/10.4028/www.scientific.net/MSF.924.47

    Article  Google Scholar 

  90. B. Liu, Y. Yu, X. Tang, B. Gao, Optimization of crucible and heating model for large-sized silicon carbide ingot growth in top-seeded solution growth. J. Cryst. Growth 533, 125406 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125406

    Article  CAS  Google Scholar 

  91. K. Fujii, K. Takei, M. Aoshima, N. Senguttuvan, M. Hiratani, T. Ujihara, Y. Matsumoto, T. Kato, K. Kurashige, H. Okumura, Influences of solution flow and lateral temperature distribution on surface morphology in solution growth of SiC. Mater. Sci. Forum 821–823, 35–38 (2015). https://doi.org/10.4028/www.scientific.net/MSF.821-823.35

    Article  Google Scholar 

  92. K. Kusunoki, K. Kamei, N. Okada, K. Moriguchi, H. Kaido, H. Daikoku, M. Kado, K. Danno, H. Sakamoto, T. Bessho, T. Ujihara, Top-seeded solution growth of 3 inch diameter 4H-SiC bulk crystal using metal solvents. Mater. Sci. Forum 778–780, 79–82 (2014). https://doi.org/10.4028/www.scientific.net/MSF.778-780.79

    Article  CAS  Google Scholar 

  93. H. Daikoku, M. Kado, A. Seki, K. Sato, T. Bessho, K. Kusunoki, H. Kaidou, Y. Kishida, K. Moriguchi, K. Kamei, Solution growth on concave surface of 4H-SiC crystal. Cryst. Growth Des. 16, 1256–1260 (2016). https://doi.org/10.1021/acs.cgd.5b01265

    Article  CAS  Google Scholar 

  94. T. Umezaki, D. Koike, S. Harada, T. Ujihara, Analysis of the carbon transport near the growth interface with respect to the rotational speed of the seed crystal during top-seeded solution growth of SiC. Jpn. J. Appl. Phys. 55, 125601 (2016). https://doi.org/10.7567/JJAP.55.125601

    Article  CAS  Google Scholar 

  95. K. Kusunoki, K. Kamei, N. Okada, N. Yashiro, A. Yauchi, T. Ujihara, K. Nakajima, Solution growth of SiC crystal with high growth rate using accelerated crucible rotation technique. Mater. Sci. Forum 527–529, 119–122 (2006). https://doi.org/10.4028/www.scientific.net/MSF.527-529.119

    Article  Google Scholar 

  96. K. Kurashige, M. Aoshima, K. Takei, K. Fujii, M. Hiratani, N. Senguttuvan, T. Kato, T. Ujihara, Y. Matsumoto, H. Okumura, Effect of forced convection by crucible design in solution growth of SiC single crystal. Mater. Sci. Forum 821–823, 22–25 (2015). https://doi.org/10.4028/www.scientific.net/MSF.821-823.22

    Article  Google Scholar 

  97. T. Horiuchi, L. Wang, A. Sekimoto, Y. Okano, T. Yamamoto, T. Ujihara, S. Dost, The effect of crucible rotation and crucible size in top-seeded solution growth of single-crystal silicon carbide. Cryst. Res. Technol. 54, 1900014 (2019). https://doi.org/10.1002/crat.201900014

    Article  CAS  Google Scholar 

  98. K. Ariyawong, Y.J. Shin, J.-M. Dedulle, D. Chaussende, Analysis of macrostep formation during top seeded solution growth of 4H-SiC. Cryst. Growth Des. 16, 3231–3236 (2016). https://doi.org/10.1021/acs.cgd.6b00155

    Article  CAS  Google Scholar 

  99. C. Zhu, S. Harada, K. Seki, H. Zhang, H. Niinomi, M. Tagawa, T. Ujihara, Influence of solution flow on step bunching in solution growth of SiC crystals. Cryst. Growth Des. 13, 3691–3696 (2013). https://doi.org/10.1021/cg400706u

    Article  CAS  Google Scholar 

  100. T. Umezaki, D. Koike, S. Harada, T. Ujihara, Improvement of surface morphology by solution flow control in solution growth of SiC on off-axis seeds. Mater. Sci. Forum 821–823, 31–34 (2015). https://doi.org/10.4028/www.scientific.net/MSF.821-823.31

    Article  Google Scholar 

  101. L. Wang, T. Horiuchi, A. Sekimoto, Y. Okano, T. Ujihara, S. Dost, Numerical investigation of the effect of static magnetic field on the TSSG growth of SiC. J. Cryst. Growth 498, 140–147 (2018). https://doi.org/10.1016/j.jcrysgro.2018.06.017

    Article  CAS  Google Scholar 

  102. M.-T. Ha, L.V. Lich, Y.-J. Shin, S.-Y. Bae, M.-H. Lee, S.-M. Jeong, Improvement of SiC crystal growth rate and uniformity via top-seeded solution growth under external static magnetic field: a numerical investigation. Materials 13, 651 (2020). https://doi.org/10.3390/ma13030651

    Article  CAS  Google Scholar 

  103. M.-T. Ha, Y.-J. Shin, S.-Y. Bae, Y.-J. Yoo, S.-M. Jeong, Effect of residual droplet on the solution-grown SiC single crystals. J. Korean Inst. Electr. Electron. Mater. Eng. 32, 516–521 (2019). https://doi.org/10.4313/JKEM.2019.32.6.516

    Article  Google Scholar 

  104. Y. Tsunooka, N. Kokubo, G. Hatasa, S. Harada, M. Tagawa, T. Ujihara, High-speed prediction of computational fluid dynamics simulation in crystal growth. CrystEngComm 20, 6546–6550 (2018). https://doi.org/10.1039/C8CE00977E

    Article  CAS  Google Scholar 

  105. L. Wang, A. Sekimoto, Y. Takehara, Y. Okano, T. Ujihara, S. Dost, Optimal control of SiC crystal growth in the RF-TSSG system using reinforcement learning. Curr. Comput.-Aided Drug Des. 10, 791 (2020). https://doi.org/10.3390/cryst10090791

    Article  CAS  Google Scholar 

  106. T. Horiuchi, L. Wang, A. Sekimoto, Y. Okano, T. Ujihara, S. Dost, Adjoint-based sensitivity analysis for the optimal crucible temperature profile in the RF-Heating TSSG-SiC crystal growth process. J. Cryst. Growth 517, 59–63 (2019). https://doi.org/10.1016/j.jcrysgro.2019.04.001

    Article  CAS  Google Scholar 

  107. Y. Takehara, A. Sekimoto, Y. Okano, T. Ujihara, S. Dost, Bayesian optimization for a high- and uniform-crystal growth rate in the top-seeded solution growth process of silicon carbide under applied magnetic field and seed rotation. J. Cryst. Growth 532, 125437 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125437

    Article  CAS  Google Scholar 

  108. Y. Takehara, A. Sekimoto, Y. Okano, T. Ujihara, S. Dost, Explainable machine learning for the analysis of transport phenomena in top-seeded solution growth. J. Therm. Sci. Technol. 16, JTST0009 (2021). https://doi.org/10.1299/jtst.2021jtst0009

    Article  CAS  Google Scholar 

  109. W. Yu, C. Zhu, Y. Tsunooka, W. Huang, Y. Dang, K. Kutsukake, S. Harada, M. Tagawa, T. Ujihara, Geometrical design of a crystal growth system guided by a machine learning algorithm. CrystEngComm 23, 2695–2702 (2021). https://doi.org/10.1039/D1CE00106J

    Article  CAS  Google Scholar 

  110. Y. Mukaiyama, M. Iizuka, A. Vorobev, V. Kalaev, Numerical investigation of the effect of shape change in graphite crucible during top-seeded solution growth of SiC. J. Cryst. Growth 475, 178–185 (2017). https://doi.org/10.1016/j.jcrysgro.2017.06.006

    Article  CAS  Google Scholar 

  111. Y. Dang, C. Zhu, M. Ikumi, M. Takaishi, W. Yu, W. Huang, X. Liu, K. Kutsukake, S. Harada, M. Tagawa, T. Ujihara, Adaptive process control for crystal growth using machine learning for high-speed prediction: an application to SiC solution growth. CrystEngComm (2021). https://doi.org/10.1039/D0CE01824D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Min Jeong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, MT., Jeong, SM. A review of the simulation studies on the bulk growth of silicon carbide single crystals. J. Korean Ceram. Soc. 59, 153–179 (2022). https://doi.org/10.1007/s43207-022-00188-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00188-y

Keywords

Navigation