Skip to main content

Control of particle morphology and size of yttria powder prepared by hydro(solvo)thermal synthesis


Yttria (Y2O3) is a representative material having excellent plasma resistance, and yttria powder, applied to semiconductor components and thermal spray coating, requires excellent sinterability and flowability, for which particle shape and size are important factors. In the present study, to synthesize yttria powder having various shape applicable to many industrial areas, the morphology of yttria particles was controlled through hydro(solvo)thermal synthesis. The yttria powder was synthesized using deionized water, ethylene glycol and glycerol as solvents. The precursor concentrations and the synthesis conditions such as synthesis temperature and time were examined. The particle shape and size of the yttria powder were adjusted to plate-type, rod-type and spherical-type depending on the applied solvent, precipitant and synthesis temperature. The thermal treatment following the hydro(solvo)thermal synthesis did not have a significant effect on the shape of the yttria particles. Cubic single-phase yttria was observed at a calcination temperature of 450 °C or higher, and the crystal phase further developed as the thermal treatment temperature increased. In the powder synthesized using deionized water, the crystal phase developed mostly on the [222] direction depending on the temperature during oriented attachment. On the other hand, in the powder synthesized using ethylene glycol and glycerol as a solvent, the crystal phase developed homogeneously in all crystalline directions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. J.H. Pee, J.C. Park, K.T. Hwang, S.R. Kim, W.S. Cho, Res. Chem. Intermed. 36, 801 (2010).

    CAS  Article  Google Scholar 

  2. J.H. Lee, S.H. Bea, Korean. J. Mater. Res. 27(8), 445 (2017).

    CAS  Article  Google Scholar 

  3. H.W. Lee, H.I. JI, J.H. Lee, B.K. Kim, K.J. Yoon, J.W. Son, J. Korean Ceram. Soc. 56(2), 130 (2019).

    CAS  Article  Google Scholar 

  4. S.K. Rha, M.J. Lee, Y.S. Lee, J. Korean Ceram. Soc. 57, 338 (2020).

    CAS  Article  Google Scholar 

  5. W.K. Jung, H.J. Ma, S.W. Jung, D.K. Kim, J. Am. Ceram. Soc. 100, 1876 (2017).

    CAS  Article  Google Scholar 

  6. W. Liu, L. Jin, S. Wang, Mater. Chem. Phys. 232, 471 (2019).

    CAS  Article  Google Scholar 

  7. X. Wang, Y. Hu, X. Meng, Y. Li, M. Zhu, H. Jin, J. Rare Earths 33(7), 706 (2015).

    CAS  Article  Google Scholar 

  8. B.V. Hao, P.T. Huy, T.N. Khiem, N.T.T. Ngan, P.H. Duong, J. Phys. Conf. Ser. 187, 012074 (2009).

    CAS  Article  Google Scholar 

  9. D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, Metal oxide nanostructures synthesis, properties and applications (Elsevier, Chisinau, 2019), pp. 37–39

    Google Scholar 

  10. M.G. Siahroudi, A.A. Daryakenari, Y.B. Molamahaleh, Q. Cao, M.A. Darayakenari, J.J. Delaunay, H. Siavoshi, F. Molaei, Int. J. Hydrogen Energy 45(55), 30357 (2020).

    CAS  Article  Google Scholar 

  11. V. Maheskumar, T. Selvaraju, B. Vidhya, Int. J. Hydrogen Energy 43(51), 22861 (2018).

    CAS  Article  Google Scholar 

  12. X. Li, Q. Li, J. Wang, J. Li, J. Lumin. 124(2), 351 (2007).

    CAS  Article  Google Scholar 

  13. Towata, M. Sivakumar, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida (2008) J. Mater. Sci. 43:1214.

  14. Q. Tang, Z. Liu, S. Li, S. Zhanga, X. Liu, Y. Qian, J. Cryst. Growth 259(1–2), 208 (2003).

    CAS  Article  Google Scholar 

  15. Z. Liu, B. Wu, D. Xiang, Y. Zhu, Mater. Res. Bull. 47(11), 3753 (2012).

    CAS  Article  Google Scholar 

  16. M.W. Shafer, R. Roy, J. Am. Ceram. Soc. 42(11), 563 (1959).

    CAS  Article  Google Scholar 

  17. H. Xian, J. Zhu, H. Tang, X. Liang, H. He, Y. Xi, CrystEngComm 18, 8823 (2016).

    CAS  Article  Google Scholar 

  18. T. Liu, Z. Jin, J. Li, J. Wang, D. Wang, J. Lai, H. Du, CrystEngComm 15, 8903 (2013).

    CAS  Article  Google Scholar 

  19. R.L. Penn, J.F. Banfield, Am. Assoc. Adv. Sci. 281(5379), 969 (1998).

    CAS  Article  Google Scholar 

  20. R.L. Penn, J.F. Banfield, Am. Mineral. 83(9–10), 1077 (1998).

    CAS  Article  Google Scholar 

  21. R.L. Penn, J.F. Banfield, Geochim. Cosmochim. Acta 63, 1549 (1999).

    CAS  Article  Google Scholar 

  22. J.A. Soltis, R.L. Penn, in Iron Oxides: From Nature to Applications, ed. By D. Faivre, R. B. Frankel (Wiley, New York, 2016), pp. 243–268.

  23. W. He, K. Wen, Y. Niu, Nanocrystals from Oriented-Attachment for Energy Applications, (Springer, New York, 2018), pp. 1–13.

  24. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000).

    CAS  Article  Google Scholar 

  25. A.L. Patterson, Phys. Rev. 56, 978 (1939).

    CAS  Article  Google Scholar 

  26. K. Nakashima, Y. Toshima, Y. Kobayashi, Y. Ishikawa, M. Kakihana, J. Asian. Ceram. Soc. 7(4), 544 (2019).

    Article  Google Scholar 

  27. J. Wu, X. Lü, L. Zhang, F. Huang, F. Xu, Eur. J. Inorg. Chem. 2009(19), 2789 (2009).

    CAS  Article  Google Scholar 

Download references


This Research was supported by Research Funds of Mokpo National University in 2021.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sang-Jin Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, BH., Lee, SJ. Control of particle morphology and size of yttria powder prepared by hydro(solvo)thermal synthesis. J. Korean Ceram. Soc. 59, 436–443 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Yttria
  • Hydrothermal synthesis
  • Solvothermal synthesis
  • Morphology
  • Precursor
  • Calcination