Skip to main content

Effects of ZnO and cordierite contents on the wetting properties of a Bi2O3–ZnO–B2O3 glass composite as a low-melting sealing glass

Abstract

The wetting properties of Bi2O3–ZnO–B2O3 glass composite materials with different ZnO and cordierite contents were investigated upon melting them and thermally treating them at 1300 °C and 430 °C, respectively. The density of a 48%Bi2O3–24%ZnO–22% B2O3 glass composite was 7.30 g/cm3, which is 99.3% of its theoretical density; its glass softening temperature was 413.2 °C. The addition of cordierite improved the adhesion of the glass by acting as a filler, thus lowering its coefficient of thermal expansion. Specifically, by adding 0–15% cordierite, the coefficient of thermal expansion of the Bi2O3–ZnO–B2O3 glass was reduced from 10.6 × 10–6 to 7.5 × 10–6 /K. X-ray diffraction and transmission electron microscopy studies confirmed that the glass was not crystallized, but rather a composite. This study demonstrates that the Bi2O3–ZnO–B2O3 glass composite developed herein is an environment-friendly lead-free material that can be sintered at 430 °C without losing its tempered glass function; therefore, this material shows promise for applications in architecture, electronic devices, and home appliances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. F. He, J. Wang, D. Deng, Effect of Bi2O3 on structure and wetting studies of Bi2O3–ZnO–B2O3 glasses. J. Alloys Compd. 509, 6332–6336 (2011)

    CAS  Article  Google Scholar 

  2. J.-Y. Song, T.-J. Park, S.-Y. Choi, Preparation and characterization of CuO doped Bi2O3–B2O3–BaO–ZnO glass system for transparent dielectric layer. J. Non-Cryst. Solids 352, 5403–5407 (2006)

    CAS  Article  Google Scholar 

  3. S.P. Singh, R.P.S. Chakradhar, J.L. Rao, B. Karmakar, EPR, FTIR, optical absorption and photoluminescence studies of Fe2O3 and CeO2 doped ZnO–Bi2O3–B2O3 glasses. J. Alloys Compd. 493, 256–262 (2010)

    CAS  Article  Google Scholar 

  4. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses. Ceram. Int. 45, 20724–20732 (2019)

    CAS  Article  Google Scholar 

  5. S. Simon, M. Todea, Spectroscopic study on iron doped silica-bismuthate glasses and glass ceramics. J. Non-Cryst. Solids 352, 2947–2951 (2006)

    CAS  Article  Google Scholar 

  6. Z. Liu, H. Zeng, X. Ji, J. Ren, G. Chen, J. Ye, Y. Dai, Y. Cheng, Formation of Bi2ZnB2O7 nanocrystals in ZnO–Bi2O3–B2O3 glass induced by femtosecond laser. J. Am. Ceram. Soc. 98, 408–412 (2015)

    CAS  Article  Google Scholar 

  7. T. Hashimoto, Y. Shimoda, H. Nasu, A. Ishihara, ZnO–Bi2O3–B2O3 glasses as molding glasses with high refractive indices and low coloration codes. J. Am. Ceram. Soc. 94, 2061–2066 (2011)

    CAS  Article  Google Scholar 

  8. A. Chahine, M. Et-Tabirou, FTIR and Raman spectra of the Na2O–CuO–Bi2O3–P2O5 glasses. J. Pascal Mater. Lett. 58, 2776–2780 (2004)

    CAS  Article  Google Scholar 

  9. B.V.R. Chowdari, Z. Rong, The influence of Bi2O3 on yLi2O (1 − y){xBi2O3(1–x)B2O3} glass system. Solid State Ion. 86, 527–533 (1996)

    Article  Google Scholar 

  10. B.C. Tischendorf, T.M. Alam, R.T. Cygan, J.U. Otaigbe, The structure and properties of binary zinc phosphate glasses studied by molecular dynamics simulations. J. Non-Cryst. Solids 316, 261–272 (2003)

    CAS  Article  Google Scholar 

  11. N.I. Medvedeva, V.P. Zhukov, V.A. Gubanov, D.L. Novikov, B.M. Klein, Electronic structure and chemical bonding in δ-Bi2O3. J. Phys. Chem. Solids 57, 1243–1250 (1996)

    CAS  Article  Google Scholar 

  12. S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO·Bi2O3·B2O3 (M = Ba, Sr) glasses. Mater. Chem. Phys. 90, 83–89 (2005)

    CAS  Article  Google Scholar 

  13. F. He, Z. He, J. Xie, Y. Li, IR and Raman Spectra Properties of Bi2O3-ZnO-B2O3-BaO Quaternary Glass System. AIDS Patient Care STDs 5, 1142 (2014)

    CAS  Google Scholar 

  14. Q.H. Trinh, Y.S. Mok, Non-thermal plasma combined with cordierite-supported Mn and Fe based catalysts for the decomposition of diethylether. Catalysts 5, 800–814 (2015)

    CAS  Article  Google Scholar 

  15. C.M. Schwarz, M. Kang, Q. Altemose, K. Raichle, B. Schnable, C. Grabill, J. Rice, M. Truman, C. Pantano, I. Mingareev, L. Sisken, C. Rivero-Baleine, K.A. Richardson, S.M. Kuebler, Processing and properties of novel ZnO–Bi2O3–B2O3 glass-ceramic nanocomposites. J. Alloys Compd. 820, 153173 (2020)

    CAS  Article  Google Scholar 

  16. S. Bale, S. Rahman, A.M. Awasthi, V. Sathe, Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses. J. Alloys Compd. 460, 699–703 (2008)

    CAS  Article  Google Scholar 

  17. X. Zhu, C. Mai, M. Li, Effects of B2O3 content variation on the Bi ions in Bi2O3–B2O3–SiO2 glass structure. J. Non-Cryst. Solids 388, 55–61 (2014)

    CAS  Article  Google Scholar 

  18. I. Dyamant, D. Itzhak, J. Hormadaly, Thermal properties and glass formation in the SiO2–B2O3–Bi2O3–ZnO quaternary system. J. Non-Cryst. Solids 351, 3503–3507 (2005)

    CAS  Article  Google Scholar 

  19. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. Singh, G. Bhikshamaiah, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J. Non-Cryst. Solids 354, 5573–5579 (2008)

    CAS  Article  Google Scholar 

  20. F. He, J.-S. Cheng, D.-W. Deng, J. Wang, Structure of Bi2O3–ZnO–B2O3 system low-melting sealing glass. J. Cent. South Univ. Technol. 17, 257–262 (2010)

    CAS  Article  Google Scholar 

  21. A. Zaichuk, A. Amelina, Y. Kalishenko, Y. Hordieiev, D. Saltykov, N. Sribniak, V. Ivchenko, L. Savchenko, Aspects of development and properties of densely sintered of ultra-high-frequency radio-transparent ceramics of cordierite composition. J. Korean Ceram. Soc. 58, 483–494 (2021)

    CAS  Article  Google Scholar 

  22. G. Wei, X. Shu, Z. Zhang, Q. Li, Y. Liu, X. Wang, Y. Xie, B. Li, D. Shao, X. Lu, B2O3–Bi2O3–ZnO based materials for low-sintering temperature immobilization of iodine adsorbed waste. J. Solid State Chem. 289, 121518 (2020)

    CAS  Article  Google Scholar 

  23. H. Lee, I.G. Kim, T.H. Kim, T.H. Kim, W.J. Chung, Transparent alumina–boro–phosphate glass coating on a thermally tempered soda-lime silicate glass substrate. J. Korean Ceram. Soc. 58, 566–573 (2021)

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the GRRC program of the Gyeonggi Province [Grant Number GRRC-KPU2021-A01, Multi-material Machining Innovative Technology Research Center] and The Catholic University of Korea, Research Fund, 2020.

Author information

Authors and Affiliations

Authors

Contributions

BHB conceptualization, methodology, and software. KHH data curation and writing-original draft preparation. JNS visualization and investigation. MJO methodology. SHR data analysis. H-DJ software, supervision, and writing-reviewing and editing. C-BY supervision and writing-reviewing and editing.

Corresponding authors

Correspondence to Hyun-Do Jung or Chang-Bun Yoon.

Ethics declarations

Conflict of interest

The authors do not have any competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bae, B.H., Hu, K.H., Song, J.N. et al. Effects of ZnO and cordierite contents on the wetting properties of a Bi2O3–ZnO–B2O3 glass composite as a low-melting sealing glass. J. Korean Ceram. Soc. 59, 208–216 (2022). https://doi.org/10.1007/s43207-021-00182-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00182-w

Keywords

  • Bi2O3–ZnO–B2O3 glass
  • Cordierite
  • Thermal properties
  • Wettability
  • Sealing material