Skip to main content
Log in

Reusable and rapid esterolysis of nitrophenyl alkanoates with CalB enzyme-immobilized magnetic nanoparticles

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study reports the preparation of the Candida antarctica lipase B (CalB) enzyme immobilization on silica-coated magnetic nanoparticles (Si-MNPs@CalB) using various cross-linkers and demonstration of rapid catalytic hydrolysis of p-nitrophenyl alkyl esters. CalB enzymes were coupled with different cross-linker silanes on the Si-MNPs surface. Among these cross-linkers, Cl-functionalized silane was better at immobilization of CalB than the others. Catalytic hydrolysis of p-nitrophenyl alkyl esters was demonstrated against Si-MNPs@CalB as a function of the length of alkyl chain (C4, C8, C12, and C16). From the Michaelis–Menten equation and Lineweaver–Burk plots, various enzyme kinetic parameters (i.e., Km, Vmax, and Kcat) were calculated. Catalytic hydrolysis was faster in shorter alkyl chain of p-nitrophenyl alkyl esters with Si-MNPs@CalB in the order C4 >> C8 > C12 >> C16. Furthermore, the reusability and optimum catalytic activity of Si-MNPs@CalB were evaluated as a function of the number of reuses and with different pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Chen, W. Xu, L. Jin, J. Zha, T. Tao, Y. Lin, Z. Wang, Synthesis of amine-functionalized Fe3O4@C nanoparticles for lipase immobilization. J. Mater. Chem. A 2(43), 18339–18344 (2014)

    Article  CAS  Google Scholar 

  2. J.S. Miranda, N.C.A. Silva, J.J. Bassi, M.C.C. Corradini, F.A.P. Lage, D.B. Hirata, A.A. Mendes, Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: Isotherm, thermodynamic and mass transfer studies. Chem. Eng. J. 251, 392–403 (2014)

    Article  CAS  Google Scholar 

  3. Y. Du, J. Gao, W. Kong, L. Zhou, L. Ma, Y. He, Z. Huang, Y. Jiang, Enzymatic synthesis of glycerol carbonate using a lipase immobilized on magnetic organosilica nanoflowers as a catalyst. ACS Omega 3(6), 6642–6650 (2018)

    Article  CAS  Google Scholar 

  4. N. Budisa, W. Wenger, B. Wiltschi, Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris. Mol. BioSyst. 6(9), 1630–1639 (2010)

    Article  CAS  Google Scholar 

  5. H.-Z. Ma, X.-W. Yu, C. Song, Q.-L. Xue, B. Jiang, Immobilization of Candida Antarctica lipase B on epoxy modified silica by sol-gel process. J. Mol. Catal. B: Enzym. 127, 76–81 (2016)

    Article  CAS  Google Scholar 

  6. C. Miao, L. Yang, Z. Wang, W. Luo, H. Li, P. Lv, Z. Yuan, Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production. Fuel 224, 774–782 (2018)

    Article  CAS  Google Scholar 

  7. X. Xing, J.Q. Jia, J.F. Zhang, Z.W. Zhou, J. Li, N. Wang, X.Q. Yu, CALB Immobilized onto magnetic nanoparticles for efficient kinetic resolution of racemic secondary alcohols: long-term stability and reusability. Molecules 24, 3 (2019)

    Google Scholar 

  8. R.R.C. Monteiro, D.M.A. Neto, P.B.A. Fechine, A.A.S. Lopes, L.R.B. Gonçalves, J.C.S. Dos Santos, M.C.M. de Souza, R. Fernandez-Lafuente, Ethyl butyrate synthesis catalyzed by lipases A and B from Candida antarctica immobilized onto magnetic nanoparticles improvement of biocatalysts’ performance under ultrasonic irradiation. Int. J. Mol. Sci. 20(22), 5807 (2019)

    Article  CAS  Google Scholar 

  9. Y. Yin, Y. Xiao, G. Lin, Q. Xiao, Z. Lin, Z. Cai, An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J. Mater. Chem. B 3(11), 2295–2300 (2015)

    Article  CAS  Google Scholar 

  10. H.R. Luckarift, J.C. Spain, R.R. Naik, M.O. Stone, Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 22(2), 211–213 (2004)

    Article  CAS  Google Scholar 

  11. K.A. Mahmoud, E. Lam, S. Hrapovic, J.H. Luong, Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme. ACS Appl. Mater. Interfaces 5(11), 4978–4985 (2013)

    Article  CAS  Google Scholar 

  12. M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas—benefits and challenges. Chem. Soc. Rev. 42(15), 6277–6289 (2013)

    Article  CAS  Google Scholar 

  13. Y. Wang, F. Caruso, Enzyme encapsulation in nanoporous silica spheres. Chem. Commun. 13, 1528–1529 (2004)

    Article  CAS  Google Scholar 

  14. J. Sun, H. Zhang, R. Tian, D. Ma, X. Bao, D.S. Su, H. Zou, Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles. Chem. Commun. 12, 1322–1324 (2006)

    Article  CAS  Google Scholar 

  15. K. Hernandez, C. Garcia-Galan, R. Fernandez-Lafuente, Simple and efficient immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads. Enzyme Microb. Technol. 49(1), 72–78 (2011)

    Article  CAS  Google Scholar 

  16. M.D. Truppo, G. Hughes, Development of an improved immobilized CAL-B for the enzymatic resolution of a key intermediate to odanacatib. Org. Proc. Res. Dev. 15(5), 1033–1035 (2011)

    Article  CAS  Google Scholar 

  17. E.A. Manoel, M. Pinto, J.C.S. dos Santos, V.G. Tacias-Pascacio, D.M.G. Freire, J.C. Pinto, R. Fernandez-Lafuente, Design of a core–shell support to improve lipase features by immobilization. RSC Adv. 6(67), 62814–62824 (2016)

    Article  CAS  Google Scholar 

  18. M.C. Montiel, M. Serrano, M.F. Maximo, M. Gomez, S. Ortega-Requena, J. Bastida, Synthesis of cetyl ricinoleate catalyzed by immobilized lipozyme (R) CalB lipase in a solvent-free system. Catal. Today 255, 49–53 (2015)

    Article  CAS  Google Scholar 

  19. K. Min, J. Kim, K. Park, Y. Yoo, Enzyme immobilization on carbon nanomaterials: loading density investigation and zeta potential analysis. J. Mol. Catal. B Enzym. 83, 87–93 (2012)

    Article  CAS  Google Scholar 

  20. S. Neupane, K. Patnode, H. Li, K. Baryeh, G. Liu, J. Hu, B. Chen, Y. Pan, Z. Yang, Enhancing enzyme immobilization on carbon nanotubes via metal–organic frameworks for large-substrate biocatalysis. ACS Appl. Mater. Interfaces 11(12), 12133–12141 (2019)

    Article  CAS  Google Scholar 

  21. N. Losada-Garcia, A. Rodriguez-Otero, J.J.C. Palomo, High degradation of trichloroethylene in water by nanostructured MeNPs@CALB biohybrid catalysts. Catalysts 10, 753 (2020)

    Article  CAS  Google Scholar 

  22. D. Bartczak, A.G. Kanaras, Preparation of peptide-functionalized gold nanoparticles using one pot EDC/Sulfo-NHS coupling. Langmuir 27(16), 10119–10123 (2011)

    Article  CAS  Google Scholar 

  23. J. Gao, W. Kong, L. Zhou, Y. He, L. Ma, Y. Wang, L. Yin, Y. Jiang, Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem. Eng. J. 309, 70–79 (2017)

    Article  CAS  Google Scholar 

  24. W. Tang, T. Ma, L. Zhou, G. Wang, X. Wang, H. Ying, C. Chen, P. Wang, Polyamine-induced tannic acid co-deposition on magnetic nanoparticles for enzyme immobilization and efficient biodiesel production catalysed by an immobilized enzyme under an alternating magnetic field. Catal. Sci. Technol. 9(21), 6015–6026 (2019)

    Article  CAS  Google Scholar 

  25. S.Y. Lee, C.Y. Ahn, J. Lee, J.H. Chang, Amino acid side chain-like surface modification on magnetic nanoparticles for highly efficient separation of mixed proteins. Talanta 93, 160–165 (2012)

    Article  CAS  Google Scholar 

  26. M.E. Park, J.H. Chang, High throughput human DNA purification with aminosilanes tailored silica-coated magnetic nanoparticles. Mater. Sci. Eng. C 27(5–8), 1232–1235 (2007)

    Article  CAS  Google Scholar 

  27. Y. Sui, Y. Cui, Y. Nie, G.M. Xia, G.X. Sun, J.T. Han, Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase. Colloids Surf. B. Biointerfaces 93, 24–28 (2012)

    Article  CAS  Google Scholar 

  28. S. Sayin, F. Ozcan, M. Yilmaz, Two novel calixarene functionalized iron oxide magnetite nanoparticles as a platform for magnetic separation in the liquid-liquid/solid-liquid extraction of oxyanions. Mater. Sci. Eng. C Mater. Biol. Appl. 33(4), 2433–2439 (2013)

    Article  CAS  Google Scholar 

  29. M. Bayrakci, O. Gezici, S.Z. Bas, M. Ozmen, E. Maltas, Novel humic acid-bonded magnetite nanoparticles for protein immobilization. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 546–552 (2014)

    Article  CAS  Google Scholar 

  30. S. Kim, D. Sung, J.H. Chang, Highly efficient antibody purification with controlled orientation of protein A on magnetic nanoparticles. Med. Chem. Commun. 9(1), 108–112 (2018)

    Article  Google Scholar 

  31. Y. Seo, H.J. Choi, Core-shell structured Fe3O4 nanocomposite particles for high-performance/stable magnetorheological fluids: preparation and characteristics. J. Kor. Ceram. Soc. 57, 608–631 (2020)

    Article  CAS  Google Scholar 

  32. H.Y. Kim, H.K. Park, Y.W. Ju, Fabrication of the novel Fe2+aO3+a-CoFe2O4 composite fibers and their magnetic properties. J. Kor. Ceram. Soc. 57, 423–431 (2020)

    Article  CAS  Google Scholar 

  33. A. Noypha, Y. Areerob, S. Chanthai, P. Nuengmatcha, Fe3O4-graphene anchored Ag nanocomposite catalyst for enhanced sonocatalytic degradation of methylene blue. J. Kor. Ceram. Soc. 58, 297–306 (2021)

    Article  CAS  Google Scholar 

  34. S. Lee, S. Lee, J. Lee, H. Lee, J.H. Chang, Biomimetic magnetic nanoparticles for rapid hydrolysis of ester compounds. Mater. Lett. 110, 229–232 (2013)

    Article  CAS  Google Scholar 

  35. K. Kang, J. Choi, J.H. Nam, S.C. Lee, K.J. Kim, S.-W. Lee, J.H. Chang, Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator. J. Phys. Chem. B 113(2), 536–543 (2009)

    Article  CAS  Google Scholar 

  36. J. Lee, J.H. Chang, Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles. Nanoscale Res. Lett. 9(1), 664–664 (2014)

    Article  CAS  Google Scholar 

  37. A. Ulu, S.A.A. Noma, S. Koytepe, B. Ates, Chloro-modified magnetic Fe(3)O(4)@MCM-41 core-shell nanoparticles for L-asparaginase immobilization with improved catalytic activity, reusability, and storage stability. Appl. Biochem. Biotechnol. 187(3), 938–956 (2019)

    Article  CAS  Google Scholar 

  38. D.C. Vellom, Z. Radic, Y. Li, N.A. Pickering, S. Camp, P. Taylor, Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32(1), 12–17 (1993)

    Article  CAS  Google Scholar 

  39. Y. Peng, S. Fu, H. Liu, L. Lucia, Accurately determining esterase activity via the isosbestic point of p-nitrophenol. BioResources 11, 10099–10111 (2016)

    Article  CAS  Google Scholar 

  40. A.G. Meyer, L. Dai, Q. Chen, C.J. Easton, L. Xia, Selective adsorption of nitro-substituted aromatics and accelerated hydrolysis of 4-nitrophenyl acetate on carbon surfaces. New J. Chem. 25(7), 887–889 (2001)

    Article  CAS  Google Scholar 

  41. M.V. Toledo, C. José, C.R.L. Suster, S.E. Collins, R. Portela, M.A. Bañares, L.E. Briand, Catalytic and molecular insights of the esterification of ibuprofen and ketoprofen with glycerol. Mol. Catal. 513(8), 811 (2021)

    Google Scholar 

  42. S. Smith, K. Goodge, M. Delaney, A. Struzyk, N. Tansey, M. Frey, A comprehensive review of the covalent of biomolecules onto electrospun nanofiber. Nanomaterials 10(11), 2142 (2020)

    Article  CAS  Google Scholar 

  43. M. Mehrasbi, J. Mohammadi, M. Peyda, M. Mohammadi, Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew. Energy 101, 593–602 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project no. PJ0149382020)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Ho Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.Y., Jang, W.Y. & Chang, J.H. Reusable and rapid esterolysis of nitrophenyl alkanoates with CalB enzyme-immobilized magnetic nanoparticles. J. Korean Ceram. Soc. 59, 527–535 (2022). https://doi.org/10.1007/s43207-021-00181-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00181-x

Keywords

Navigation