Skip to main content
Log in

Synthesis and enhanced electromechanical properties of Bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 piezoceramics by ordinary firing process

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The crystal structure and electromechanical properties of a novel lead-free (1–z) (0.67Bi1.05FeO3–0.33BaTiO3)–zBi(Mg0.5Zr0.5)O3 (BFBT–BMZ100z, with z = 0.00–0.10) ceramic were studied using a mixed oxide method. The addition of BMZ to the BF-BT host system had no significant influence on the crystal structure. The dielectric constant was reduced when BMZ was incorporated, and the dielectric curves became more dispersed. For z = 0.060 composition, increased electric field-induced strain was attained with dynamic piezoelectric constant Smax/Emax = d*33 = 315 pm/V at 4 kV/mm. This sample (z = 0.060) also has a high Curie temperature of TC = 420 °C. The developed system's observed features suggest that it could be useful for high-temperature piezoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.A. Malik, A. Zaman, A. Hussain, A. Maqbool, T.K. Song, W.-J. Kim, Y.S. Sung, M.-H. Kim, Temperature invariant high dielectric properties over the range 200 °C–500 °C in BiFeO3 based ceramics. J. Eur. Ceram. Soc. 38, 2259–2263 (2018)

    Article  CAS  Google Scholar 

  2. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015)

    Article  Google Scholar 

  3. J.W. Woo, S. Baek, T.K. Song, M.H. Lee, J.U. Rahman, W.-J. Kim, Y.S. Sung, M.-H. Kim, S. Lee, Nonstoichiometric effects in the leakage current and electrical properties of bismuth ferrite ceramics. J. Korean Ceram. Soc. 54(4), 323–330 (2017)

    Article  CAS  Google Scholar 

  4. A. Maqbool, A. Hussain, R.A. Malik, J.U. Rahman, A. Zaman, T.K. Song, W.J. Kim, M.H. Kim, Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics. Mater. Sci. Eng. B. 199, 105–112 (2015)

    Article  CAS  Google Scholar 

  5. H. Nagata, T. Shinya, Y. Hiruma, T. Takenaka, I. Sakaguchi, H. Haneda, Piezoelectric properties of bismuth sodium titanate ceramics. Ceram. Trans. 167, 213–222 (2005)

    CAS  Google Scholar 

  6. P.Y. Chen, C.C. Chou, T.Y. Tseng, H. Chen, Correlation of microstructures and conductivities of ferroelectric ceramics using complex impedance spectroscopy. Jpn. J. Appl. Phys. 49, 061505 (2010)

    Article  Google Scholar 

  7. A. Ullah, C.W. Ahn, R.A. Malik, I.W. Kim, Dielectric and impedance spectroscopy of lead-free 0.99 [(Bi0.5 Na0.4K0.1)(Ti0.980Nb0.020) O3]–0.01 (Ba0.7Sr0.3) TiO3 ceramics. Phys. B Condens. Matter. 444, 27–33 (2014)

    Article  CAS  Google Scholar 

  8. A. Hussain, A. Maqbool, R.A. Malik, J.-H. Lee, Y.-S. Sung, T.-K. Song, M.-H. Kim, Phase structure and electromechanical behavior of Li, Nb co-doped 0.95 Bi0.5Na0.5TiO3–0.05 BaZrO3 ceramics. Ceram. Int. 43, S204–S208 (2017)

    Article  CAS  Google Scholar 

  9. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.J. Kim, M.H. Kim, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J. Alloys. Compds. 682, 302–310 (2016)

    Article  CAS  Google Scholar 

  10. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564–5567 (1999)

    Article  CAS  Google Scholar 

  11. Z. Yang, B. Liu, L. Wei, Y. Hou, Structure and electrical properties of (1–x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81–89 (2008)

    Article  CAS  Google Scholar 

  12. M. Alzaid, F. Alsalh, R.A. Malik, A. Maqbool, N. Almoisheer, N.M.A. Hadia, W.S. Mohamed, LiTaO3 assisted giant strain and thermally stable energy storage response for renewable energy storage applications. Ceram. Int. 47, 15710–15721 (2021)

    Article  CAS  Google Scholar 

  13. T. Takenaka, T. Okuda, K. Takegahara, Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3–NaNbO3. Ferroelectrics 196, 175–178 (1997)

    Article  CAS  Google Scholar 

  14. H. Ishii, H. Nagata, T. Takenaka, Morphotropic phase boundary and electrical properties of bisumuth sodium titanate—Potassium niobate solid-solution ceramics. Jpn. J. Appl. Phys. 40, 5660–5663 (2001)

    Article  Google Scholar 

  15. C.I. Cheon, J.H. Choi, J.S. Kim, J. Zang, T. Fromling, J. Rodel, W. Jo, Role of (Bi1/2K1/2)TiO3 in the dielectric relaxations of BiFeO3–(Bi1/2K1/2)TiO3 ceramics. J. Appl. Phys. 119, 154101–154105 (2016)

    Article  Google Scholar 

  16. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, BiFeO3 ceramics: Processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97, 1993–2011 (2014)

    Article  CAS  Google Scholar 

  17. S.A. Khan, T. Ahmed, F. Akram, J. Bae, S.Y. Choi, T.T. Thanh, M. Kim, T.K. Song, Y.S. Sung, M.H. Kim, S. Lee, Effect of sintering temperature on the electrical properties of pristine BF-35BT piezoelectric ceramics. J. Korean Ceram. Soc. 57, 290–295 (2020)

    Article  CAS  Google Scholar 

  18. H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions. Ceram. Int. 40, 4759–4765 (2014)

    Article  CAS  Google Scholar 

  19. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 95, 670–675 (2012)

    Article  CAS  Google Scholar 

  20. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Enhanced polarization and magnetization in multiferroic (1–x)BiFeO3–xSrTiO3 solid solution. Solid State Sci. 13, 2196–2200 (2011)

    Article  CAS  Google Scholar 

  21. H.Y. Liu, Y.P. Guo, B. Guo, W. Dong, D. Zhang, BiFeO3–(Na0.5Bi0.5)TiO3 butterfly wing scales: synthesis, visible-light photocatalytic and magnetic properties. J. Eur. Ceram. Soc. 32, 4335–4340 (2012)

    Article  CAS  Google Scholar 

  22. S.X. Huo, S.L. Yuan, Y. Qiu, Z.Z. Ma, C.H. Wang, Crystal structure and multiferroic properties of BiFeO3–Na0.5K0.5NbO3 solid solution ceramics prepared by Pechini method. Mater. Lett. 68, 8–10 (2012)

    Article  CAS  Google Scholar 

  23. J. Chen, J. Cheng, Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess Bi content. J. Alloys. Compds. 589, 115–119 (2014)

    Article  CAS  Google Scholar 

  24. C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li, H. Wang, Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics. J Mater. Sci Mater. Electron. 24, 1685–1689 (2013)

    Article  CAS  Google Scholar 

  25. Q. Fan, C. Zhou, W. Zeng, L. Cao, C. Yuan, G. Rao, X. Li, Normal-to-relaxor ferroelectric phase transition and electrical properties in Nb-modified 0.72BiFeO3–0.28BaTiO3 ceramics. J. Electroceram. 36, 1–7 (2016)

    Article  CAS  Google Scholar 

  26. Z. Yao, C. Xu, Z. Wang, Z. Song, Y. Zhang, W. Hu, H. Hao, M. Cao, H. Liu, Microstructure, ferro-piezoelectric and thermal stability of SiO2 modified BiFeO3–BaTiO3 high temperature piezoceramics. J. Mater. Sci. Mater. Elect. 26, 479–484 (2015)

    Article  CAS  Google Scholar 

  27. S.A. Khan, F. Akram, R.A. Malik, J.C. Kim, R.A. Pasha, S. Lee, T.K. Song, Y.S. Sung, M.H. Kim, Piezoelectric and ferroelectric properties of lead-free Ga-modified 0.65BiFeO3–0.35BaTiO3 ceramics by water quenching process. Ferroelectrics 541, 54–60 (2019)

    Article  CAS  Google Scholar 

  28. Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yan, L. Cao, J. Song, L. Peng, Remarkably high-temperature stability of Bi(Fe1−xAlx)O3–BaTiO3 solid solution with near-zero temperature coefficient of piezoelectric properties. J. Am. Ceram. Soc. 96(7), 2252–2256 (2013)

    Article  CAS  Google Scholar 

  29. C. Zhou, H. Yang, Q. Zhou, Z. Cen, W. Li, C. Yuan, H. Wang, Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3–BaTiO3 ceramics. Ceram. Int. 39, 4307–4311 (2013)

    Article  CAS  Google Scholar 

  30. D.J. Kim, M.H. Lee, J.S. Park, M.H. Kim, T.K. Song, S.W. Kim, W.J. Kim, K.W. Jang, S.S. Kim, D. Do, Ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 ceramics. J. Electroceram 33, 37–41 (2014)

    Article  CAS  Google Scholar 

  31. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2957–2961 (2009)

    Article  CAS  Google Scholar 

  32. Y. Wan, Y. Li, Q. Li, W. Zhou, Q. Zheng, X. Wu, C. Xu, B. Zhu, D. Lin, Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3–BaTiO3 multiferroic ceramics with MnO2 addition. J. Am. Ceram. Soc. 97(6), 1809–1818 (2014)

    Article  CAS  Google Scholar 

  33. Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, D. Lin, Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3–BaTiO3 lead-free ceramics. J. Appl. Phys. 116, 184101–184111 (2014)

    Article  Google Scholar 

  34. N. Jiang, M. Tian, L. Luo, Q. Zheng, D. Shi, K.H. Lam, C. Xu, D. Lin, Phase structure, piezoelectric and multiferroic properties of SmCoO3-modified BiFeO3–BaTiO3 lead-free ceramics. J. Electron. Mater. 45, 291–300 (2016)

    Article  CAS  Google Scholar 

  35. L. Luo, N. Jiang, F. Lei, Y. Guo, Q. Zheng, D. Lin, Phase transition, ferroelectric and piezoelectric properties of Bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 25, 1736–1744 (2014)

    Article  CAS  Google Scholar 

  36. J.S. Park, M.H. Lee, D.J. Kim, M.H. Kim, T.K. Song, S.W. Kim, W.J. Kim, S. Kumar, Enhanced piezoelectric properties of BaZrO3-substituted 0.67BiFeO3–0.33BaTiO3 lead-free ceramics. J. Korean Phys. Soc. 66, 1106–1109 (2015)

    Article  CAS  Google Scholar 

  37. D. Zheng, R. Zuo, A novel BiFeO3–BaTiO3–BaZrO3 lead-free relaxor ferroelectric ceramic with low-hysteresis and frequency-insensitive large strains. J. Am. Ceram. Soc. 98(12), 3670–3672 (2015)

    Article  CAS  Google Scholar 

  38. Y. Guo, P. Xiao, L. Luo, N. Jiang, F. Lei, Q. Zheng, D. Lin, Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 25, 3753–3761 (2014)

    Article  CAS  Google Scholar 

  39. X. Shan, C. Zhou, Z. Cen, H. Yang, Q. Zhou, W. Li, Bi(Zn1/2Ti1/2)O3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics with high temperature stability. Ceram. Int. 39, 6707–6712 (2013)

    Article  CAS  Google Scholar 

  40. J. Chen, J.E. Daniels, J. Jian et al., Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics. Acta Mater. 197, 1–9 (2020)

    Article  CAS  Google Scholar 

  41. Y. Kuroiwa, S. Kim, I. Fujii et al., Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations. Commun. Mater. 1, 1–8 (2020)

    Article  Google Scholar 

  42. G. Wang, Z. Fan, S. Murakami et al., Origin of the large electrostrain in BiFeO3–BaTiO3 based lead-free ceramics. J. Mater. Chem. 7, 21254–21263 (2019)

    Article  CAS  Google Scholar 

  43. Z. Lu, G. Wang, L. Li et al., In situ poling X-ray diffraction studies of lead-free BiFeO3–SrTiO3 ceramics. Mater. Today Phys. 19, 100426 (2021)

    Article  CAS  Google Scholar 

  44. I. Fujii, R. Iizuka, Y. Nakahira, Y. Sunada, S. Ueno, K. Nakashima, E. Magome, C. Moriyoshi, Y. Kuroiwa, S. Wada, Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3-modified BaTiO3–BiFeO3 piezoelectric ceramics. Appl. Phys. Lett. 108, 172903–172904 (2016)

    Article  Google Scholar 

  45. R.A. Malik, H. Alrobei, Processing and characterization of BCZT-modified BiFeO3–BaTiO3 piezoelectric ceramics. Crystals. 11(9), 1077 (2021).

    Article  CAS  Google Scholar 

  46. J. Yin, C. Zhao, Y. Zhang et al., Composition-induced phase transitions and enhanced electrical properties in bismuth sodium titanate ceramics. J. Am. Ceram. Soc. 100, 5601–5609 (2017)

    Article  CAS  Google Scholar 

  47. L. Wu, B. Shen, Q. Hu et al., Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3–BaTiO3)–LiNbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 100, 4670–4679 (2017)

    Article  CAS  Google Scholar 

  48. G. Dong, H. Fan, J. Shi et al., Composition- and temperature-dependent large strain in (1–x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 ceramics. J. Am. Ceram. Soc. 98, 1150–1155 (2015)

    Article  CAS  Google Scholar 

  49. R.F. Ge, Z.H. Zhao, S.F. Duan et al., Large electro-strain response of La3+ and Nb5+ co-doped ternary 0.85Bi0.5Na0.5TiO3–0.11Bi0.5K0.5TiO3–0.04BaTiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 724, 1000–1006 (2017)

    Article  CAS  Google Scholar 

  50. X. Liu, X. Tan et al., Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28, 574 (2016)

    Article  CAS  Google Scholar 

  51. W. Bai, Y. Bian, J. Hao et al., The composition and temperature-dependent structure evolution and large strain response in (1–x)(Bi0.5Na0.5)TiO3−xBa(Al0.5Ta0.5)O3 ceramics. J. Am. Ceram. Soc. 96, 246 (2013)

    Article  CAS  Google Scholar 

  52. J. Hao, B. Shen, J. Zhai et al., Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. J. Appl. Phys. 113, 114106 (2013)

    Article  Google Scholar 

  53. G.H. Ryu, A. Hussain, M.H. Lee et al., Lead-free high performance Bi (Zn0.5Ti0.5)O3-modified BiFeO3–BaTiO3 piezoceramics. J. Eur. Ceram. Soc. 38, 4414–4421 (2018)

    Article  CAS  Google Scholar 

  54. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, High-Performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976–6982 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University under Grant No (DSR-2021-03-03107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meshal Alzaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzaid, M., Malik, R.A., Maqbool, A. et al. Synthesis and enhanced electromechanical properties of Bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 piezoceramics by ordinary firing process. J. Korean Ceram. Soc. 59, 124–130 (2022). https://doi.org/10.1007/s43207-021-00167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00167-9

Keywords

Navigation