Skip to main content

Advertisement

Log in

Thermal stability of active electrode material in contact with solid electrolyte

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

For lithium battery systems including solid-state batteries, the solid electrolytes are playing an important role in enhancing the lithium transportation through the electrode/electrolyte interface resulting in the enhanced electrochemical performance of active materials which can prevent the dendrite formation for long term cycle life. However, the formation of the solid electrolyte film on the materials' surface is carrying on via various types of methods. Especially for oxide-salt-type of solid electrolytes of Li2O–MxOy–LixXy system, these solid electrolyte is forming on the surface of materials via the melt quenching technique at above 500 °C that can lead to the unstable and degradation the structure of the active materials resulting in the lower performance compared to the traditional (wet-chemistry or solid stare reaction) formation of solid electrolyte film. In this work, the thermochemical stability of the active material in contact with the solid electrolyte after formation via a high-temperature method is investigated by the thermogravimetric and X-ray diffraction analysis, and galvanostatic charge–discharge and cyclic voltammetry measurements confirm that the electrochemical degradation can be attributed mainly to the partial destruction of cathode structure and surface oxidation of current collector leading to the lower electrochemical performance. The results suggest that the process formation of solid electrolyte film of the oxide-salt system should not exceed 250–300 °C and is highly relevant to a critical area for the active electrode materials without the degradation of the material structure and decreasing electrochemical performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.R. Palacin, Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev. 38, 2565–2575 (2009)

    Article  CAS  Google Scholar 

  2. Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environ. 1, 18–42 (2016)

    Article  Google Scholar 

  3. M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    Article  CAS  Google Scholar 

  4. L. Suo, F. Han, X. Fan, H. Liu, K. Xu, C. Wang, "Water-in-salt” electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications. J. Mater. Chem. A 4, 6639–6644 (2016)

    Article  CAS  Google Scholar 

  5. A. Tron, Y.N. Jo, S.H. Oh, Y.D. Park, J. Mun, Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS Appl. Mater. Interfaces 9, 12391–12399 (2017)

    Article  CAS  Google Scholar 

  6. Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors. Nature Mater. 14, 1026–1031 (2015)

    Article  CAS  Google Scholar 

  7. A. Tron, A. Nosenko, Y.D. Park, J. Mun, Synthesis of the solid electrolyte Li2O−LiF−P2O5 and its application for lithium-ion batteries. Solid State Ionics 308, 40–45 (2017)

    Article  CAS  Google Scholar 

  8. W. Zhou, Y. Li, S. Xin, J.B. Goodenough, Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017)

    Article  CAS  Google Scholar 

  9. K. Takada, Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013)

    Article  CAS  Google Scholar 

  10. J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010)

    Article  CAS  Google Scholar 

  11. R.C. Agrawal, R.K. Gupta, Superionic solids: composite electrolyte phase — an overview. J. Mater. Sci. 34, 1131–1162 (1999)

    Article  CAS  Google Scholar 

  12. V.K. Deshpande, S.G. Charalwar, K. Singh, Electrical conductivity of Li2O-B2O3-P2O5-Li2SO4 glass system. Solid State lonics 40(41), 689–692 (1990)

    Article  Google Scholar 

  13. I.Y. Kim, S.H. Jee, Y.S. Yoon, High-speed deposited amorphous Li–B–W–O thin film electrolytes for all-solid-state batteries. Sci. Adv. Mater. 8, 96–102 (2016)

    Article  CAS  Google Scholar 

  14. A. Tron, A. Nosenko, Y.D. Park, J. Mun, Enhanced ionic conductivity of the solid electrolyte for lithium-ion batteries. J. Solid State Chemistry 258, 467–470 (2018)

    Article  CAS  Google Scholar 

  15. E.M. Shembel, A.V. Nosenko, A.M. Kvasha, Solid vitreous electrolytes based on the system Li2O-Li2SO4-B2O3-MoO3 for rechargeable lithium power sources. Ionics 11, 132–139 (2005)

    Article  CAS  Google Scholar 

  16. A. Hayashi, M. Tatsumisago, T. Minami, Electrochemical properties for lithium ion conductive (100-x) (0.6Li2S-0.4SiS2)xLi4SiO4 oxysulfide glasses. J. Electrochem. Soc. 146, 3472–3475 (1999)

    Article  CAS  Google Scholar 

  17. S. Ujiie, A. Hayashi, M. Tatsumisago, Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes. Solid State Ionics 211, 42–45 (2012)

    Article  CAS  Google Scholar 

  18. T. Ohtomo, A. Hayashi, M. Tatsumisago, Y. Tsuchida, S. Hama, K. Kawamoto, All-solid-state lithium secondary batteries using the 75Li2S⋅25P2S5 glass and the 70Li2S⋅30P2S5 glass-ceramic as solid electrolytes. J. Power Sources 233, 231–235 (2013)

    Article  CAS  Google Scholar 

  19. K. Takada, N. Aotani, K. Iwamoto, S. Kondo, Solid state lithium battery with oxysulfide glass. Solid State Ionics 86–88, 877–882 (1996)

    Article  Google Scholar 

  20. E. Shembel, A. Kvasha, A. Nosenko, Y. Pustovalov, P. Novak, Half-cells based on solid vitreous electrolyte and thermo expanded graphite, 6th Advanced Batteries and Accumulators – ABA-2005, Brno, Czech Republic.

  21. A. Tron, Y.D. Park, J. Mun, AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J. Power Sources 325, 360–364 (2016)

    Article  CAS  Google Scholar 

  22. J. Wang, Q. Zhang, X. Li, Z. Wang, K. Zhang, H. Guo, G. Yan, B. Huang, Z. He, A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance. Electrochem. Commun. 36, 6–9 (2013)

    Article  Google Scholar 

  23. J. Kim, H. Kang, N. Go, S. Jeong, T. Yim, Y.N. Jo, K.T. Lee, J. Mun, Egg-shell structured LiCoO2 by Cu2+ substitution to Li+ sites via facile stirring in an aqueous copper(ii) nitrate solution. J. Mater. Chem. A 5, 24892–24900 (2017)

    Article  CAS  Google Scholar 

  24. M.K. Devaraju, I. Honma, Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2, 284–297 (2012)

    Article  CAS  Google Scholar 

  25. J.S. Gnanaraj, V.G. Pol, A. Gedanken, D. Aurbach, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochem. Commun. 5, 940–945 (2003)

    Article  CAS  Google Scholar 

  26. Y. Fang, Y. Huang, S. Zhang, W. Jia, X. Wang, Y. Guo, D. Jia, L. Wang, Synthesis of unique hierarchical mesoporous layered-cube Mn2O3 by dual-solvent for high-capacity anode material of lithium-ion batteries. Chem. Eng. J. 315, 583–590 (2017)

    Article  CAS  Google Scholar 

  27. T. Aoshima, K. Okahara, C. Kiyohara, K. Shizuka, Mechanisms of manganese spinels dissolution and capacity fade at high temperature. J. Power Sources 377, 97–98 (2001)

    Google Scholar 

  28. X. Gao, Y. Sha, Q. Lin, R. Cai, M.O. Tade, Z. Shao, Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. J. Power Sources 275, 38–44 (2015)

    Article  CAS  Google Scholar 

  29. R.A. Robie, D.R. Waldbaum, Thermodynamic Properties of Minerals and Related Substances at 298.15°K (25.0 °C) and One Atmosphere (1.013 bars) Pressure and at Higher Temperatures, Geological Survey Bulletin 1259, U.S. Government Printing Office, Washington, 1968.

  30. C. Yang, Y. Deng, M. Gao, X. Yang, X. Qin, G. Chen, High-rate and long-life performance of a truncated spinel cathode material with off-stoichiometric composition at elevated temperature. Electrochim. Acta 225, 198–206 (2017)

    Article  CAS  Google Scholar 

  31. A. Tron, A. Nosenko, Y.D. Park, J. Mun, The solid electrolytes Li2O-LiF-Li2WO4-B2O3 with enhanced ionic conductivity for lithium-ion battery. J. Ind. Eng. Chem. 73, 62–66 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Post-Doctoral Research Program (2017–2018) in the Incheon National University (INU), Incheon, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Tron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tron, A., Nosenko, A. & Mun, J. Thermal stability of active electrode material in contact with solid electrolyte. J. Korean Ceram. Soc. 59, 193–201 (2022). https://doi.org/10.1007/s43207-021-00164-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00164-y

Keywords

Navigation