Skip to main content

Advertisement

Log in

Sol–gel synthesis of soda lime silica-based bioceramics using biomass as renewable sources

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The purpose of the work is to prepare and assess soda lime silica-based (SiO2CaONa2O) bioactive ceramics using biomass as renewable sources. Thus we produced SiO2CaONa2O-based bioactive ceramics by sol–gel process using rice husk and eggshells as sources of silica and calcium oxide, respectively. The precursors such as calcinated eggshell powder, rice husk ash (RHA) and sodium hydroxide (NaOH) were processed by sol–gel method, resultant in SiO2CaONa2O-based bioactive ceramics. The gel-derived sintered sample showed combeite high (Na6Ca3Si6O18) as a major crystalline phase. Subsequently, the sintered specimens were analyzed from the physical and structural point of view, and in terms of apatite mineralization rate in simulated environments and cytocompatibility in relative to human osteoblast-like cells. The studies showed that the produced crystalline SiO2CaONa2O-based ceramics showed an average porosity of 45%. In vitro evaluation of the biological properties revealed that the prepared ceramics possesses the mineralization of carbonated hydroxyapatite (CHA) in simulated environment with good cytocompatibility and controlled degradation rate. Therefore, the results obtained suggest that the prepared SiO2CaONa2O-based bioactive ceramics using biomass as renewable sources might be a low cost ceramics for applications in biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. L.L. Hench, The story of Bioglass®. J. Mater. Sci. Mater. Med. (2016). https://doi.org/10.1007/s10856-006-0432-z

    Article  Google Scholar 

  2. R.A. Surmenev, M.A. Surmeneva, A.A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater. (2014). https://doi.org/10.1016/j.actbio.2013.10.036

    Article  Google Scholar 

  3. D. Madrid, Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. (2004). https://doi.org/10.1016/j.progsolidstchem.2004.07.001

    Article  Google Scholar 

  4. G. Pezzotti, Bioceramics are not bioinert. Mater. Today. (2017). https://doi.org/10.1016/j.mattod.2017.06.008

    Article  Google Scholar 

  5. S.M. Best, A.E. Porter, E.S. Thian, J. Huang, Bioceramics: past, present and for the future. J. Eur. Ceram. Soc. (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.001

    Article  Google Scholar 

  6. K. Lin, C. Wu, J. Chang, Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. (2014). https://doi.org/10.1016/j.actbio.2014.06.017

    Article  Google Scholar 

  7. T. Thamaraiselvi, S. Rajeswari, Biological evaluation of bioceramic materials-a review. Trends Biomater. Artif. Organs. 18, 1–21 (2004)

    Google Scholar 

  8. M. Vallet-Regí, E. Ruiz-Hernández, Bioceramics: from bone regeneration to cancer nanomedicine. Adv. Mater. (2011). https://doi.org/10.1002/adma.201101586

    Article  Google Scholar 

  9. Y. Zhang, J.D. Santos, Crystallization and microstructure analysis of calcium phosphate-based glass ceramics for biomedical applications. J. Non. Cryst. Solids. (2000). https://doi.org/10.1016/S0022-3093(00)00115-0

    Article  Google Scholar 

  10. S. Kumar, P. Vinatier, A. Levasseur, K.J. Rao, Investigations of structure and transport in lithium and silver borophosphate glasses. J. Solid State Chem. (2004). https://doi.org/10.1016/j.jssc.2003.12.034

    Article  Google Scholar 

  11. D.B. Jaroch, D.C. Clupper, Modulation of zinc release from bioactive sol-gel derived SiO2-CaO-ZnO glasses and ceramics. J. Biomed. Mater. Res. Part A. (2007). https://doi.org/10.1002/jbm.a.31180

    Article  Google Scholar 

  12. D. Arcos, M. Vallet-Regí, Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. (2010). https://doi.org/10.1016/j.actbio.2010.02.012

    Article  Google Scholar 

  13. J. Lao, J.M. Nedelec, P. Moretto, E. Jallot, Micro-PIXE characterization of interactions between a sol-gel derived bioactive glass and biological fluids. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms (2006). https://doi.org/10.1016/j.nimb.2005.12.049

    Article  Google Scholar 

  14. C. Ergun, Z. Evis, T.J. Webster, F.C. Sahin, Synthesis and microstructural characterization of nano-size calcium phosphates with different stoichiometry. Ceram. Int. (2011). https://doi.org/10.1016/j.ceramint.2010.11.004

    Article  Google Scholar 

  15. K. Zheng, A.R. Boccaccini, Sol-gel processing of bioactive glass nanoparticles: a review. Adv. Colloid Interface Sci. (2017). https://doi.org/10.1016/j.cis.2017.03.008

    Article  Google Scholar 

  16. H.B. Dizaji, T. Zeng, I. Hartmann, D. Enke, T. Schliermann, V. Lenz, M. Bidabadi, Generation of high quality biogenic silica by combustion of rice husk and rice straw combined with pre- and post-treatment strategies—a review. Appl. Sci. (2019). https://doi.org/10.3390/app9061083

    Article  Google Scholar 

  17. A. Zareihassangheshlaghi, H.B. Dizaji, T. Zeng, P. Huth, T. Ruf, R. Denecke, D. Enke, Behavior of metal impurities on surface and bulk of biogenic silica from rice husk combustion and the impact on ash-melting tendency. ACS Sustain. Chem. Eng. (2020). https://doi.org/10.1021/acssuschemeng.0c01484

    Article  Google Scholar 

  18. S. Vichaphund, M. Kitiwan, D. Atong, P. Thavorniti, Microwave synthesis of wollastonite powder from eggshells. J. Eur. Ceram. Soc. (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.026

    Article  Google Scholar 

  19. R. Jayasree, J. Velkumar, T.S. Sampath Kumar, Egg shell derived apatite cement for the treatment of angular periodontal defects: a preliminary clinical and radiographic assessment. Dent. Oral Craniofac. Res. (2017). https://doi.org/10.15761/docr.1000238

    Article  Google Scholar 

  20. R. Abu, R. Yahya, S. Neon, Production of high purity amorphous silica from rice husk. Proc. Chem. (2016). https://doi.org/10.1016/j.proche.2016.03.092

    Article  Google Scholar 

  21. ASTM International, Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle. ASTM B962-13 (2013). https://doi.org/10.1520/B0962-17.2

  22. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  23. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. (1990). https://doi.org/10.1002/jbm.820240607

    Article  Google Scholar 

  24. S. Palakurthy, In vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.03.169

    Article  Google Scholar 

  25. A. Oki, B. Parveen, S. Hossain, S. Adeniji, H. Donahue, Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials. J. Biomed. Mater. Res. Part A. (2004). https://doi.org/10.1002/jbm.a.20070

    Article  Google Scholar 

  26. M. Montazerian, B.E. Yekta, V.K. Marghussian, C.F. Bellani, R.L. Siqueira, E.D. Zanotto, Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders. Mater. Sci. Eng. C. (2015). https://doi.org/10.1016/j.msec.2015.05.065

    Article  Google Scholar 

  27. S.A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, Effects of milling and calcination temperature on the compressibility and sinterability of a nanocrystalline Al2O3-Y3Al5O12 composite powder. J. Am. Ceram. Soc. (2008). https://doi.org/10.1111/j.1551-2916.2008.02727.x

    Article  Google Scholar 

  28. R. Choudhary, S.K. Venkatraman, A. Chatterjee, J. Vecstaudza, M.J. Yáñez-Gascón, H. Pérez-Sánchez, J. Locs, J. Abraham, S. Swamiappan, Biomineralization, antibacterial activity and mechanical properties of biowaste derived diopside nanopowders. Adv. Powder Technol. (2019). https://doi.org/10.1016/j.apt.2019.06.014

    Article  Google Scholar 

  29. R. Lakshmi, V. Velmurugan, S. Sasikumar, Preparation and phase evolution of wollastonite by sol-gel combustion method using sucrose as the fuel. Combust. Sci. Technol. (2013). https://doi.org/10.1080/00102202.2013.835308

    Article  Google Scholar 

  30. R. Du, J. Chang, Preparation and characterization of bioactive sol-gel-derived Na2Ca2 Si3O9. J. Mater. Sci. Mater. Med. (2004). https://doi.org/10.1007/s10856-004-5736-2

    Article  Google Scholar 

  31. J.P. Nayak, S. Kumar, J. Bera, Sol-gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization. J. Non. Cryst. Solids. (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.041

    Article  Google Scholar 

  32. S. Palakurthy, R.K. Samudrala, In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater. Sci. Eng. C. (2019). https://doi.org/10.1016/j.msec.2018.12.101

    Article  Google Scholar 

  33. C.A. Fernández, C.A. Martínez, M.O. Prado, D. Olmedo, A. Ozols, Bone regeneration with Wharton’s Jelly-bioceramic-bioglass composite. Proc. Mater. Sci. (2015). https://doi.org/10.1016/j.mspro.2015.04.026

    Article  Google Scholar 

  34. H.C. Li, D.G. Wang, C.Z. Chen, Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite. Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.04.117

    Article  Google Scholar 

  35. J.H. Kim, S.H. Kim, H.K. Kim, T. Akaike, S.C. Kim, Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. (2002). https://doi.org/10.1002/jbm.10280

    Article  Google Scholar 

  36. C. Ohtsuki, T. Kokubo, K. Takatsuka, T. Yamamuro, Compositional dependence of bioactivity of glasses in the system CaO-SiO2-P2O5: its in vitro evaluation. J. Ceram. Soc. Japan. Int. Ed. (1991). https://doi.org/10.2109/jcersj.99.1

    Article  Google Scholar 

  37. R. Samudrala, P.A. Azeem, V. Penugurti, B. Manavathi, Cytocompatibility studies of titania-doped calcium borosilicate bioactive glasses in-vitro. Mater. Sci. Eng. C. (2017). https://doi.org/10.1016/j.msec.2017.03.245

    Article  Google Scholar 

  38. K. Lin, M. Zhang, W. Zhai, H. Qu, J. Chang, Fabrication and characterization of hydroxyapatite/wollastonite composite bioceramics with controllable properties for hard tissue repair. J. Am. Ceram. Soc. (2011). https://doi.org/10.1111/j.1551-2916.2010.04046.x

    Article  Google Scholar 

  39. M. Zahedi, S.A. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Sol-gel synthesis and luminescence properties of Ba2SiO4:Sm3+ nanostructured phosphors. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.03.006

    Article  Google Scholar 

  40. Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass—ceramic scaffolds for bone tissue engineering. Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2005.11.025

    Article  Google Scholar 

  41. L.L. Hench, Bioceramics. J. Am. Ceram. Soc. 81, 1705–1728 (1998)

    Article  CAS  Google Scholar 

  42. O. Peitl, E. Dutra Zanotto, L.L. Hench, Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J. Non. Cryst. Solids. (2001). https://doi.org/10.1016/S0022-3093(01)00822-5

    Article  Google Scholar 

  43. H.A. Abo-Mosallam, S.N. Salama, S.M. Salman, Formulation and characterization of glass-ceramics based on Na2Ca2Si3O9-Ca5(PO4)3F-Mg2SiO4-system in relation to their biological activity. J. Mater. Sci. Mater. Med. (2009). https://doi.org/10.1007/s10856-009-3811-4

    Article  Google Scholar 

  44. A.M. Galow, A. Rebl, D. Koczan, S.M. Bonk, W. Baumann, J. Gimsa, Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem. Biophys. Reports. (2017). https://doi.org/10.1016/j.bbrep.2017.02.001

    Article  Google Scholar 

  45. EN-ISO-10993-14, Biological evaluation of medical devices—part 14: identification and quantification of degradation products from ceramics. ISO 10993-142001 (2001). Accessed 15 Nov 2001

  46. E. Fiume, J. Barberi, E. Vern, F. Baino, Bioactive glasses: from parent 45s5 composition to scaffold-assisted tissue-healing therapies. J Funct Biomater. (2018). https://doi.org/10.3390/jfb9010024

    Article  Google Scholar 

  47. International Organization for Standardization, Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. ISO 10993-5 (2009). Accessed 1 June 2009

  48. P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials (2004). https://doi.org/10.1016/j.biomaterials.2003.09.086

    Article  Google Scholar 

  49. S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials (2005). https://doi.org/10.1016/j.biomaterials.2005.01.006

    Article  Google Scholar 

  50. M. Cerruti, N. Sahai, Silicate biomaterials for orthopaedic and dental implants. Rev. Miner. Geochem. (2006). https://doi.org/10.2138/rmg.2006.64.9

    Article  Google Scholar 

  51. Y. Ramaswamy, C. Wu, H. Zhou, H. Zreiqat, Biological response of human bone cells to zinc-modified Ca-Si-based ceramics. Acta Biomater. (2008). https://doi.org/10.1016/j.actbio.2008.04.014

    Article  Google Scholar 

  52. C. Wu, Y. Ramaswamy, D. Kwik, H. Zreiqat, The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials (2007). https://doi.org/10.1016/j.biomaterials.2007.04.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MHRD & Science and Engineering Research Board, India for financial assistance (Ref: Letter No. EMR/2016/006870). We also thank the Director, National Institute of Technology, Warangal for providing us with facilities to carrying out the experiments.

Funding

This study was funded by Science and Engineering Research Board, India (Grant Number EMR/2016/006870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Abdul Azeem.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

I, P. Abdul Azeem voluntarily agree to participate in this research study.

Consent for publication

I, P. Abdul Azeem hereby declare that I participated in the study and in the development of the manuscript. I have read the final version and give my consent for the article to be published in Journal of the Korean Ceramics Society.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palakurthy, S., Azeem, P.A. & Reddy, K.V. Sol–gel synthesis of soda lime silica-based bioceramics using biomass as renewable sources. J. Korean Ceram. Soc. 59, 76–85 (2022). https://doi.org/10.1007/s43207-021-00163-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00163-z

Keywords

Navigation