Skip to main content

Advertisement

Log in

Processing and properties of water-absorbing zeolite-based porous ceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Zeolite-based porous ceramics were developed using inexpensive natural zeolite powder with B2O3, Bi2O3, and SiO2 additives and sintered at low temperatures (500–600 °C) compared to those in previous studies (800–1300 °C). The effects of sintering temperature on the porosity, microstructure, flexural strength, thermal conductivity, and water absorption capacity were investigated. As the sintering temperature increased from 500 to 600 °C, the porosity of the zeolite-based porous ceramics decreased from 49.6 to 45.7%, which is attributed to improved densification at high temperature via viscous flow of the glass phase. The flexural strength and thermal conductivity increased from 5.4 to 11.9 MPa and from 0.19 to 0.30 W/mK, respectively, with increasing sintering temperature. The samples sintered at 550 and 600 °C were highly stable in water, with high absorption capacities of 37.6 and 34.1 wt%, respectively. The typical flexural strength, thermal conductivity, and water absorption capacity of the zeolite-based porous ceramic sintered at 550 °C (~ 46% porosity) were 8.4 MPa, 0.24 W/mK, and 37.6%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The material and data are available from the authors upon reasonable request.

Code availability

This study does not cover custom computer code or algorithm.

References

  1. M.W. Ackley, S.U. Rege, H. Saxena, Microporous Mesoporous Mater. (2003). https://doi.org/10.1016/S1387-1811(03)00353-6

    Article  Google Scholar 

  2. R. Roque-Malherbe, W.D. Valle, F. Marquez, J. Duconge, M.F.A. Goosen, Sep. Sci. Technol. (2006). https://doi.org/10.1080/01496390500446277

    Article  Google Scholar 

  3. J. Cui, X. Zhang, H. Liu, S. Liu, K.L. Yeung, J. Membr. Sci. (2008). https://doi.org/10.1016/j.memsci.2008.08.015

    Article  Google Scholar 

  4. B. Kim, S. Lee, J. Korean Ceram. Soc. (2020). https://doi.org/10.1007/s43207-020-00043-y

    Article  Google Scholar 

  5. B. Gao, S. Jang, H. Son, H.J. Lee, H.J. Lee, J.J. Yang, C.J. Bae, J. Korean Ceram. Soc. (2020). https://doi.org/10.1007/s43207-020-00075-4

    Article  Google Scholar 

  6. Y. Tian, Y. Tang, J. Wang, R. Zhang, X. Yan, G. Peng, L. Fang, Q. Jing, Int. J. Appl. Ceram. Technol. (2020). https://doi.org/10.1111/ijac.13468

    Article  Google Scholar 

  7. R.S. Bowman, Microporous Mesoporous Mater. (2003). https://doi.org/10.1016/S1387-1811(03)00354-8

    Article  Google Scholar 

  8. S. Wang, Y. Peng, Chem. Eng. J. 156, 11–24 (2010). https://doi.org/10.1016/j.cej.2009.10.029

    Article  CAS  Google Scholar 

  9. I. Solmus, C. Yamali, B. Kaftanoglu, D. Baker, A. Caglar, Appl. Energy (2010). https://doi.org/10.1016/j.apenergy.2009.11.027

    Article  Google Scholar 

  10. W. Wang, L. Wu, Z. Li, Y. Fang, J. Ding, J. Xiao, Dry. Technol. (2013). https://doi.org/10.1080/07373937.2013.792094

    Article  Google Scholar 

  11. R. Konig, M. Spaggiari, O. Santoliquido, P. Principi, G. Bianchi, A. Ortona, J. Clean Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.120500

    Article  Google Scholar 

  12. B. Mendes, I.K. Andrade, J.M. de Carvalho, L. Pedroti, A. de Oliveira Junior, Int. J. Appl. Ceram. Technol. (2021). https://doi.org/10.1111/ijac.13635

    Article  Google Scholar 

  13. R. Gusain, N. Kumar, S.S. Ray, Coord. Chem Rev. (2020). https://doi.org/10.1016/j.ccr.2019.213111

    Article  Google Scholar 

  14. S. Kesraoui-Ouki, C.R. Cheeseman, R. Perry, J. Chem. Tech. Biotechnol. (1994). https://doi.org/10.1002/jctb.280590202

    Article  Google Scholar 

  15. P. Misaelides, Microporous Mesoporous Mater. (2011). https://doi.org/10.1016/j.micromeso.2011.03.024

    Article  Google Scholar 

  16. J. Janchen, D. Ackermann, H. Stach, W.B. Rosicke, Sol. Energy. (2004). https://doi.org/10.1016/j.solener.2003.07.036

    Article  Google Scholar 

  17. M.M. Arimi, Prog. Nat. Sci: Mater. Int. (2017). https://doi.org/10.1016/j.pnsc.2017.02.001

    Article  Google Scholar 

  18. A.C. Feltrin, H.M. de Souza, T.F. de Aquino, C.R.M. Marques, E. Angioletto, Int. J. Appl. Ceram. Technol. (2021). https://doi.org/10.1111/ijac.13744

    Article  Google Scholar 

  19. D.A. White, R.L. Bussey, Separ Purif Technol. (1997). https://doi.org/10.1016/S1383-5866(97)00009-9

    Article  Google Scholar 

  20. V.I. Vereshagin, S.N. Sokolova, Constr. Build. Mater. (2008). https://doi.org/10.1016/j.conbuildmat.2007.01.016

    Article  Google Scholar 

  21. O. Şan, M. Koç, H. Cengizler, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.08.108

    Article  Google Scholar 

  22. O. Şan, C. Özgür, Sintering effect on the microstructure of glassy porous ceramics. In: 6th International Advanced Technologies Symposium (IATS’11) Elazığ, Turkey, p. 132–135 (2011)

  23. S. Yamanaka, P.B. Malla, S. Komarneni, Zeolites (1989). https://doi.org/10.1016/0144-2449(89)90004-3

    Article  Google Scholar 

  24. E.P. Ng, S. Mintova, Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2007.12.022

    Article  Google Scholar 

  25. M. Raimondo, M. Dondi, D. Gardini, G. Guarini, F. Mazzanti, Constr. Build. Mater. (2009). https://doi.org/10.1016/j.conbuildmat.2009.01.009

    Article  Google Scholar 

  26. J.H. Eom, Y.W. Kim, I.H. Song, J. Eur. Ceram. Soc. (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.040

    Article  Google Scholar 

  27. S.C. Kim, H.J. Yeom, Y.W. Kim, I.H. Song, J.H. Ha, Int. J. Appl. Ceram. Technol. (2017). https://doi.org/10.1111/ijac.12693

    Article  Google Scholar 

  28. O. San, S. Abalı, C. Hosten, Ceram. Int. (2003). https://doi.org/10.1016/S0272-8842(03)00047-6

    Article  Google Scholar 

  29. P. Hristov, A. Yoleva, S. Djambazov, I. Chukovska, D. Dimitrov, J. Univ. Chem. Technol. Metall. 47, 476–480 (2012)

    CAS  Google Scholar 

  30. H. Liu, C. Jie, Y. Ma, Z. Wang, X. Wang, Trans. Indian Ceram. Soc. (2020). https://doi.org/10.1080/0371750X.2020.1722754

    Article  Google Scholar 

  31. M. Mohamed, N. Dayirou, H. Mohamed, N. André, L.N.G. Laure, N. Daniel, Trans Indian Ceram. Soc. (2020). https://doi.org/10.1080/0371750X.2019.1692695

    Article  Google Scholar 

  32. S.M.B. Respati, R. Soenoko, Y.S. Irawan, W. Suprapto, Appl. Mech. Mater. (2016). https://doi.org/10.4028/www.scientific.net/AMM.836.219

    Article  Google Scholar 

  33. T.J. Rockett, W.R. Foster, J. Am. Ceram. Soc. (1965). https://doi.org/10.1111/j.1151-2916.1965.tb11803.x

    Article  Google Scholar 

  34. T. Takamori, J. Am. Ceram. Soc. (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05112.x

    Article  Google Scholar 

  35. H. Shao, T. Wang, Q. Zhang, J. Alloy Compd. (2009). https://doi.org/10.1016/j.jallcom.2009.03.186

    Article  Google Scholar 

  36. A.I. Borhan, M. Gromada, G.G. Nedelcu, L. Leontie, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.03.199

    Article  Google Scholar 

  37. S. Wu, X. Wei, X. Wang, H. Yang, S. Gao, J. Mater. Sci. Technol. (2010). https://doi.org/10.1016/S1005-0302(10)60075-8

    Article  Google Scholar 

  38. K.W. Tay, Y.P. Fu, Q.F. Huang, F.H. Jang, Ceram. Int. (2010). https://doi.org/10.1016/j.ceramint.2009.12.021

    Article  Google Scholar 

  39. K.W. Tay, Y.P. Fu, J.F. Huang, H.C. Huang, Ceram. Int. (2011). https://doi.org/10.1016/j.ceramint.2010.11.017

    Article  Google Scholar 

  40. H. Doweidar, K. El-Egili, R. Ramadan, M. Al-Zaibani, J. Non-Cryst. Solids (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.025

    Article  Google Scholar 

  41. T. Uchino, A. Aboshi, S. Kohara, Y. Ohishi, M. Shakashita, K. Aoki, Phys. Rev. B. (2004). https://doi.org/10.1103/PhysRevB.69.155409

    Article  Google Scholar 

  42. S. Kultayeva, J.H. Ha, R. Malik, Y.W. Kim, K.J. Kim, J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.045

    Article  Google Scholar 

  43. D. Zhao, K. Cleare, C. Oliver, C. Ingram, D. Cook, R. Szostak, L. Kevan, Microporous Mesoporous Mater. (1998). https://doi.org/10.1016/S1387-1811(98)00131-0

    Article  Google Scholar 

  44. D.B. Akkoca, M. Yιlgιn, M. Ural, H. Akçin, A. Mergen, Geochem. Int. (2013). https://doi.org/10.1134/S0016702913040022

    Article  Google Scholar 

  45. S.K. Wahono, D.J. Prasetyo, T.H. Jatmiko, A. Suwanto, D. Pratiwi, Hernawan, K. Vasilev, IOP Conf. Ser: Earth Environ. Sci. (2019). https://doi.org/10.1088/1755-1315/251/1/012009

    Article  Google Scholar 

  46. G.E. Christidis, D. Moratis, E. Keheyan, L. Akhalbedashvili, N. Kekelidze, R. Gevorkyan, H. Yeritsyan, H. Sargsyan, Appl. Clay Sci. (2003). https://doi.org/10.1016/S0169-1317(03)00150-9

    Article  Google Scholar 

  47. T. Tunç, A.Ş Demirkıran, Powder Technol. (2014). https://doi.org/10.1016/j.powtec.2014.03.069

    Article  Google Scholar 

  48. F. Matteucci, M. Dondi, G. Guarini, Ceram. Int. (2002). https://doi.org/10.1016/S0272-8842(02)00067-6

    Article  Google Scholar 

  49. S. Yuruyen, H.O. Toplan, Ceram. Int. (2009). https://doi.org/10.1016/j.ceramint.2009.02.005

    Article  Google Scholar 

  50. J.H. Eom, Y.W. Kim, B.J. Jung, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2012.08.064

    Article  Google Scholar 

  51. J.H. Eom, H.J. Yeom, Y.W. Kim, I.H. Song, Clays Clay. Miner. (2015). https://doi.org/10.1346/CCMN.2015.0630305

    Article  Google Scholar 

  52. J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A.V. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, K. Unger, Pure. Appl. Chem. (2012). https://doi.org/10.1351/PAC-REP-10-11-19

    Article  Google Scholar 

  53. M. Kruk, M. Jaroniec, Chem. Mater. (2001). https://doi.org/10.1021/cm0101069

    Article  Google Scholar 

  54. R. Malik, Y.W. Kim, I.H. Song, J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.056

    Article  Google Scholar 

  55. M. Fukushima, Y. Zhou, Y.I. Yoshizawa, H. Miyazaki, K. Hirao, J. Ceram. Soc. Jpn. (2006). https://doi.org/10.2109/jcersj.114.571

    Article  Google Scholar 

  56. H.J. Yeom, S.C. Kim, Y.W. Kim, I.H. Song, Ceram. Int. (2016). https://doi.org/10.2109/jcersj.114.571

    Article  Google Scholar 

  57. Y. Liu, Y. Su, J. Cao, J. Guan, L. Xu, R. Zhang, M. He, Q. Zhang, L. Fan, Z. Jiang, Nanoscale (2017). https://doi.org/10.1039/C7NR00818J

    Article  Google Scholar 

  58. T. Ohji, M. Fukushima, Int. Mater. Rev. (2012). https://doi.org/10.1179/1743280411Y.0000000006

    Article  Google Scholar 

  59. K.H. Zuo, Y.P. Zeng, D. Jiang, Int. J. Appl. Ceram. Technol. (2008). https://doi.org/10.1111/j.1744-7402.2008.02190.x

    Article  Google Scholar 

  60. F.P. Knudsen, J Am Ceram. Soc. (1959). https://doi.org/10.1111/j.1151-2916.1959.tb13596.x

    Article  Google Scholar 

  61. R.W. Rice, J. Mater. Sci. (1996). https://doi.org/10.1007/BF00357860

    Article  Google Scholar 

  62. J.H. Eom, Y.W. Kim, J. Ceram. Soc. Jpn. (2008). https://doi.org/10.2109/jcersj2.116.1159

    Article  Google Scholar 

  63. B.K. Nandi, R. Uppaluri, M.K. Purkait, Appl. Clay Sci. (2008). https://doi.org/10.1016/j.clay.2007.12.001

    Article  Google Scholar 

  64. F. Bouzerara, S. Boulanacer, A. Harabi, B. Boudaira, S. Achour, S. Condom, Phys. Procedia. (2009). https://doi.org/10.1016/j.phpro.2009.11.115

    Article  Google Scholar 

  65. J.H. Eom, Y.W. Kim, I.H. Song, J. Korean Ceram. Soc. (2013). https://doi.org/10.4191/kcers.2013.50.5.341

    Article  Google Scholar 

  66. H. Aloulou, H. Bouhamed, A. Ghorbel, R.B. Amar, S. Khemakhem, Desalin. Water Treat. (2017). https://doi.org/10.5004/dwt.2017.21348

    Article  Google Scholar 

  67. M.M. Bazin, N. Ahmad, Y. Nakamura, J. Asian Ceram. Soc. (2019). https://doi.org/10.1080/21870764.2019.1658339

    Article  Google Scholar 

  68. S. Rajpoot, J.H. Ha, Y.W. Kim, K.J. Kim, J. Eur Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.04.018

    Article  Google Scholar 

  69. S. Rajpoot, R. Malik, Y.W. Kim, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.07.109

    Article  Google Scholar 

  70. W.L. Huo, X. Zhang, Z. Hu, Y. Chen, Y. Wang, J. Yang, J. Am. Ceram. Soc. (2019). https://doi.org/10.1111/jace.16115

    Article  Google Scholar 

  71. H. Mori, Y. Hamamoto, S. Yoshida, Trans. Jpn. Soc. Refrig. Air. Cond. Eng. (2000). https://doi.org/10.11322/tjsrae.17.171

    Article  Google Scholar 

  72. S. Djambazov, A. Yoleva, P. Chervenliev, A. Georgiev, J. Chem. Technol. Metall. 50, 520–524 (2015)

    Google Scholar 

  73. J. Klett, L. Klett, J. Kaufman, U.S. Pat. 7,456,131, Nov. 25, (2008)

  74. L. Borchardt, N.L. Michels, T. Nowak, S. Mitchell, J. Pérez-Ramírez, Microporous Mesoporous Mater. (2015). https://doi.org/10.1016/j.micromeso.2015.01.028

    Article  Google Scholar 

  75. P.F. Ahmadi, A. Ardeshir, A.M. Ramezanianpour, Ceram Int. (2018). https://doi.org/10.1016/j.ceramint.2018.01.175

    Article  Google Scholar 

Download references

Funding

The financial support was provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07042558).

Author information

Authors and Affiliations

Authors

Contributions

SR: conceptualization, methodology, data curation, formal analysis, writing—original draft. ESK: operation—micromeritics instrument (BET). Y-WK: conceptualization, methodology, supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Young-Wook Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 682 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajpoot, S., Kang, E.S. & Kim, YW. Processing and properties of water-absorbing zeolite-based porous ceramics. J. Korean Ceram. Soc. 59, 94–103 (2022). https://doi.org/10.1007/s43207-021-00160-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00160-2

Keywords

Navigation