Skip to main content

Thermoelectric transport properties of S-doped In0.9Si0.1Se

Abstract

Layered metal chalcogenides with highly promising thermoelectric properties have attracted attention owing to their intrinsically low thermal conductivity, which originates from their unique layered structure and van der Waals bonding. InSe, a post-transition metal chalcogenide, also has layered atomic structure and low thermal conductivity. We investigate the effects of S doping of Si-doped InSe, In0.9Si0.1Se. The S-doped In0.9Si0.1Se exhibits enhanced thermoelectric properties, with a higher power factor and lower thermal conductivity compared to Si-doped InSe. A significant increase in carrier mobility has an overall positive effect on the electronic transport properties, resulting in a systematic increase in power factor from 0.05 to 0.15 mW/mK2 with S doping. In addition, the thermal conductivity systematically decreases with S doping owing to additional point-defect scattering. Because of the higher power factor and lower thermal conductivity, the thermoelectric figure of merit of the In0.9Si0.1Se0.9S0.1 sample at 735 K was 0.18, which is 3.6 times that of In0.9Si0.1Se.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    G.J.M. Velders, A.R. Ravishankara, M.K. Miller, M.J. Molina, J. Alcamo, J.S. Daniel, D.W. Fahey, S.A. Montzka, S. Reimann, Preserving montreal protocol climate benefits by limiting HFCs. Science 335, 922 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3. J. Alloy. Compd. 315(1–2), 193–197 (2001)

    CAS  Article  Google Scholar 

  4. 4.

    H. Scherrer, and S. Scherrer, “in Thermoelectrics Handbook: Macro to Nano,” CRC press, Boca Raton., 1–27 (2006)

  5. 5.

    K.H. Lee, S. Hwang, B. Ryu, K. Ahn, J. Roh, D. Yang, S.M. Lee, H. Kim, S.I. Kim, Enhancement of the Thermoelectric Performance of Bi0.4Sb1.6Te3 Alloys by In and Ga Doping. J. Electron. Mater. 44, 1531–1535 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Pei, Z.M. Gibbs, A. Gloskovskii, B. Balke, W.G. Zeier, G.J. Snyder, Optimum carrier concentration in n-type PbTe thermoelectrics. Adv. Energy Mater. 4(13), 1400486 (2014)

    Article  Google Scholar 

  7. 7.

    K. Kim, G. Kim, S.I. Kim, K.H. Lee, W. Lee, Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3. J Mater Chem 21(40), 15843 (2011)

    Article  Google Scholar 

  8. 8.

    H.J. Cho, H.S. Kim, S.I. Kim, Effect of Cu/In Doping on the thermoelectric transport properties of Bi-Sb-Te Alloys. Korean J. Met. Mater. 57(10), 673–678 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    S.Y. Kim, H.S. Kim, K.H. Lee, H. Cho, S. Choo, S. Hong, Y. Oh, Y. Yang, K. Lee, J.H. Lim, S.M. Choi, H.J. Park, W.H. Shin, S.I. Kim, Influence of Pd Doping on Electrical and Thermal Properties of n-Type Cu0.008Bi2.Te27Se0.3 Alloys. Materials. 12(24), 4080 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. Nat. Commun. 7, 12167 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20(3), 357–376 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    J.-S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, Y.S. Kwon, J.H. Shim, G. Kotliar, Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals. Nature 459(7249), 965–968 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    J. Cui, L. Wang, P. Ting, Y. Deng, High thermoelectric performance of a defect in α-In2Se3-based solid solution upon substitution of Zn for In. J. Mater. Chem. C. 35, 9069 (2015)

    Article  Google Scholar 

  14. 14.

    D.P. Spitzer, Lattice thermal conductivity of semiconductors: A chemical bond approach. J. Phys. Chem. Solids. 31(1), 19–40 (1970)

    CAS  Article  Google Scholar 

  15. 15.

    X. Hou, S. Chen, Z. Du, X. Liu, J. Cui, Improvement of the thermoelectric performance of InSe-based alloys doped with Sn. RSC Adv. 5(124), 102856–102862 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    S. Shigetomi, T. Ikari, Electrical and optical properties of n and p-InSe doped with Sn and As. Int. J. Appl. Phys. 93(4), 2301–2303 (2003)

    CAS  Article  Google Scholar 

  17. 17.

    K.H. Lee, M.W. Oh, H.S. Kim, W.H. Shin, K. Lee, J.H. Lim, J. Kim, S.I. Kim, Enhanced thermoelectric transport properties of n-type InSe due to the emergence of the flat band by Si doping. Inorg. Chem. Front. 6(6), 1475–1481 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    K. Takarabe,“Raman Scattering Spectra of InS under Pressure” Phys Stat Sol (b), 143 K67 (1987)

  19. 19.

    S.A. Hussein, Temperature dependences of the electrical conductivity and hall coefficient of indium telluride single crystals. Crys. Res. Technol. 24, 635 (1989)

    CAS  Article  Google Scholar 

  20. 20.

    J.H. Jeon, D.H. Kim, S. Hong, W.H. Shin, N.V. Du, H. Kim, T. Kim, S. Kim, Thermoelectric properties of Te-doped In0.9Si0.1Se with enhanced effective mass. Electron. Mater. Lett. 17, 340–346 (2021)

    CAS  Article  Google Scholar 

  21. 21.

    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 32(5), 751–767 (1976)

    Article  Google Scholar 

  23. 23.

    H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials 3(4), 041506 (2015)

    Article  Google Scholar 

  24. 24.

    H. Wang, A.D. LaLaonde, Y. Pei, G.J. Snyder, The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 23, 1586 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    H.S. Kim, S.I. Kim, K. H. Lee, S.W. Kim, G.J. Snyder, “Phonon scattering by dislocations at grain boundaries in polycrystalline Bi0.5Sb1.5Te3”, Phys. Stat. Sol. (b) 2541600103 (2017)

Download references

Acknowledgements

This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2020) for Sang-il Kim and by the National Research Foundation of Korea (NRF- 2021R1C1C1006147) for TaeWan Kim.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to TaeWan Kim or Sang-il Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Kim, HS., Rahman, J.U. et al. Thermoelectric transport properties of S-doped In0.9Si0.1Se. J. Korean Ceram. Soc. (2021). https://doi.org/10.1007/s43207-021-00153-1

Download citation

Keywords

  • Thermoelectric
  • Metal chalcogenides
  • Anion doping