Skip to main content

Photoluminescence characterizations in phase transition alumina with boehmite nanostructures

Abstract

The phase transition alumina γ, ẟ, θ, α with boehmite nanostructure have been prepared, and a relative study between the crystal structure, annealing temperature, and photoluminescence properties are reported in this paper. The effects of different temperatures up to 1600 ℃ on the boehmite nanostructure revealed different phases of alumina which are characterized using X-ray diffraction (XRD) technique. The evolution of crystal micrographs and grain size during the transformation are studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The emission spectra of the obtained samples are investigated using photoluminescence (PL) spectroscopy in which the traces of inherent impurities of Cr3+ are detected in the α-Al2O3 without any doping. The XRD and SEM/TEM analysis show that with increasing temperature, the transformation of boehmite into a well-crystallized α-Al2O3 and the micrographs from nanoplatelets with spindle-like edges to vermicular structure take place. Thus, this paper reports an important role of temperature in the phase transition, morphologies, and in the photoluminescence properties of the obtained samples. The optical properties investigate the defects associated with each phase of alumina in the transition alumina material system. The considerable sign of the crystal phase found that the emission band spectra of the corresponding phase vary greatly due to the presence of traces of uncontrolled impurity like Cr3+ found in the sample. The most prominent peak corresponding to the ruby laser has been found due to these Cr3+ ions in the most stable phase, α-Al2O3 which is the final product.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    D.X. Hongyi, J.M. Li, A novel method for synthesizing well-defined boehmite hollow microspheres. J. Colloid Interface Sci. 504, 660–668 (2017)

    Article  Google Scholar 

  2. 2.

    P.S. Behera, S. Bhattacharyya, Thermal decomposition, phase evolution and morphology study of combustion synthesized alumina powder—influence of precursor pH. Mater. Chem. Phys. 259, 124030 (2021)

    CAS  Article  Google Scholar 

  3. 3.

    A.M. Abyzov, N.A. Khristyuk, V.V. Kozlov et al., Alumina ceramics doped with manganese titanate via applying Mn–Ti–O coatings to corundum micro powder. J. Korean Ceram. Soc. 57, 692–707 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    A. Fathi, H. Baharvandi, Effect of heat-treatment temperature on mechanical properties and microstructure of alumina–SiC nanocomposite. J. Korean Ceram. Soc. 57, 503–512 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    R.K. Pati, J.C. Ray, P. Pramanik, A novel chemical route for the synthesis of nanocrystalline α-Al2O3 powder. Mater. Lett. 44, 299–303 (2000)

    CAS  Article  Google Scholar 

  6. 6.

    F.-S. Pei-Ling Chang, K.-C. Yen, H.-L. Wen, Examinations on the critical and primary crystallite sizes during θ- to α-phase transformation of ultrafine alumina powders. Nano Lett. 1, 253–261 (2001)

    Article  Google Scholar 

  7. 7.

    L. Shen, H. Chunfeng, Y. Sakka, Q. Huang, Study of phase transformation behaviour of alumina through precipitation method. J. Phys. D Appl. Phys. 45, 215302 (2012)

    Article  Google Scholar 

  8. 8.

    A. Kostyukov, M. Baronskiy, A. Rastorguev, V. Snytnikov, V. Snytnikov, A. Zhuzhgov, A. Ishchenko, Photoluminescence of Cr3+ in nanostructured Al2O3 synthesized by evaporation using a continuous wave CO2 laser. RSC Adv. 6, 2072 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J.B. Brubach, P. Berthet, A.M. Huntz, P. Roy, R. Tétot, Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J. Solid State Chem. 182, 1171–1176 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    A. Pearson, Aluminium Oxide, Activated Kirk–Othmer Encyclopedia of Chemical Technology, vol. 2 (Wiley, New York, 1994), p. 291

    Google Scholar 

  11. 11.

    C. Misra, Aluminium Oxide, Hydrated in Kirk–Othmer Encyclopedia of Chemical Technology, vol. 2 (Wiley, New York, 1994), p. 317

    Google Scholar 

  12. 12.

    N. Shahid, R.G. Villate, A.R. Barron, Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Compos. Sci. Technol. 65, 2250–2258 (2005)

    CAS  Article  Google Scholar 

  13. 13.

    B.E. Yoldas, Alumina sol preparation from alkoxides. Ceram. Bull. 54, 289–290 (1975)

    CAS  Google Scholar 

  14. 14.

    B.E. Yoldas, Alumina gels that form porous transparent Al2O3. J. Mater. Sci. 10, 1856–1860 (1975)

    CAS  Article  Google Scholar 

  15. 15.

    R.K. Pati, J.C. Ray, P. Pramanik, A novel chemical route for the synthesis of nanocrystalline α-Al2O3. Mater. Lett. 44, 299–303 (2000)

    CAS  Article  Google Scholar 

  16. 16.

    F. Karouia, M. Boualleg, M. Digne, P. Alphonse, The impact of nanocrystallite size and shape on phase transformation: application to the boehmite/alumina transformation. Adv. Powder Technol. 27, 1814–1820 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    Z.Q. Yu, C.X. Wang, X.T. Gu, C. Li, Photoluminescent properties of boehmite whisker prepared by sol-gel process. J. Lumin. 106, 153–157 (2004)

    CAS  Article  Google Scholar 

  18. 18.

    L. Kovarik, M. Bowden, J. Szanyi, High-temperature transition alumina’s in δ-Al2O3/θ-Al2O3 stability range: review. J. Catal. 393, 357–368 (2021)

    CAS  Article  Google Scholar 

  19. 19.

    M. Chmielewski, K. Pietrzak, Processing, microstructure and mechanical properties of Al2O3–Cr nanocomposites. J. Eur. Ceram. Soc. 27, 1273–1279 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    Lu. Shen, Hu. Chunfeng, S. Zhou, A. Mukherjee, Q. Huang, Phase-dependent photoluminescence behaviour of Cr-doped alumina phosphors. Opt. Mater. 35, 1268–1272 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    G. Rani, P.D. Sahare, Structural and photoluminescent properties of Al2O3: Cr3+ nanoparticles via solution combustion synthesis method. Adv. Powder Technol. 25, 767–772 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    X. Krokidis, P. Raybaud, A.-E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, Theoretical study of the dehydration process of boehmite to γ-alumina. J. Phys. Chem. B 105, 5121–5130 (2001)

    CAS  Article  Google Scholar 

  23. 23.

    Lu. Xingwen, J. Yang, X. Li, F. Sun, F. Wang, Y. Chao, Effects of phase transformation on properties of alumina ceramic membrane: a new assessment based on quantitative X-ray diffraction (QXRD). Chem. Eng. Sci. 199, 349–358 (2019)

    Article  Google Scholar 

  24. 24.

    G. Paglia, C.E. Buckley, A.L. Rohl, R.D. Hart, K. Winter, A.J. Studer, B.A. Hunter, J.V. Hanna, Boehmite derived γ-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ′-alumina. Chem. Mater. 16, 220–236 (2004)

    CAS  Article  Google Scholar 

  25. 25.

    G. Rani, P.D. Sahare, Effect of temperature on structural and optical properties of boehmite nanostructure. Int. J. Appl. Ceram. Technol. 12, 124–132 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    G. Rani, P.D. Sahare, Effect of phase transitions on thermoluminescence characteristics of nanocrystalline alumina. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 311, 71–77 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    S. Cava, S.M. Tebcherani, S.A. Pianaro, C.A. Paskocimas, E. Longo, J.A. Varela, Structural and spectroscopic analysis of γ-Al2O3 to α-Al2O3–CoAl2O4 phase transition. Mater. Chem. Phys. 97, 102–108 (2006)

    CAS  Article  Google Scholar 

  28. 28.

    Z.Q. Yu, C.X. Wang, T.X. Gu, C. Li, Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies. J. Lumin. 106, 153–157 (2004)

    CAS  Article  Google Scholar 

  29. 29.

    T. Toyoda, T. Obikawa, T. Shigenari, Photoluminescence spectroscopy of Cr3+ in ceramic Al2O3. Mater. Sci. Eng. B 54, 33–37 (1998)

    Article  Google Scholar 

  30. 30.

    X.Y. Chen, H.S. Huh, S.W. Lee, Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies. Nanotechnology 18, 1–5 (2007)

    CAS  Google Scholar 

  31. 31.

    L. Trinkler, B. Berzina, D. Jakimovica, J. Grabis, I. Steins, UV-light induced luminescence processes in Al2O3 bulk and nano-size powders. Opt. Mater. 32, 789–795 (2010)

    CAS  Article  Google Scholar 

  32. 32.

    K.S. Choudhari, D. Hebbar, S.D. Kulkarni, C. Santhosh, S.D. George, Cr3+ doped nanoporous anodic alumina: facile microwave-assisted doping to realize nanoporous ruby and phase-dependent photoluminescence. Ceram. Int. 45, 12130–12137 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    R. Krishnan, R. Kesavamoorthy, S. Dash, A.K. Tyagi, B. Raj, Raman spectroscopic and photoluminescence investigations on laser surface modified α-Al2O3 coatings. Scripta Mater. 48, 1099–1104 (2003)

    CAS  Article  Google Scholar 

  34. 34.

    R. Jankowiak, K. Roberts, P. Tomasik, M. Sikora, G.J. Small, C.H. Schilling, Probing the crystalline environment of α-alumina via luminescence of metal ion impurities: an optical method of ceramic flaw detection. Mater. Sci. Eng. A 281, 45–55 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Department of Physics and Astrophysics, and University Science Instrumentation Centre (USIC), University of Delhi for providing necessary assistance and instrumentation support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Geeta Rani.

Ethics declarations

Data availability

The data which support the findings of this study will be available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rani, G. Photoluminescence characterizations in phase transition alumina with boehmite nanostructures. J. Korean Ceram. Soc. 58, 747–752 (2021). https://doi.org/10.1007/s43207-021-00151-3

Download citation

Keywords

  • PL spectroscopy
  • Transition alumina
  • Boehmite
  • Cr3+
  • Annealing