Skip to main content

The photoluminescence properties of hybrid materials of metal (II)-8-hydroxyquinoline into mesoporous silica

Abstract

The hybrid materials (HBs) of metal (II)-8-hydroxyquinoline complexes, namely Coq2, Niq2 and Znq2 (Mq2), in the mesoporous silica were prepared, as well as their optical properties were investigated. The mesoporous silica (MCM) was synthesized by colloidal reaction of sodium silicate solution from the rice husk. After that the HBs was prepared by the solid–solid reactions between mesoporous silica, transition metals and 8-hydroxyquinoline. The incorporation of HBs were characterized by SEM, FT–IR, AAS, as well as PL. The photoluminescence maxima and intensities of the HBs varied depending on the spectro-chemical series and electron configuration as well as microstructure of metal complexes and mesoporous characteristics. The photoluminescence of the products increased in the order of Coq2@MCM < Znq2@MCM < Niq2@MCM. The host mesoporous silica improves photoluminescence properties such that the PL intensities of Mq2 complexes into MCM were higher than those of the free complexes because mesoporous silica can reduce the luminescence quenching and enhance the complete metal-to-ligand charge transfer of metal complexes. Especially, the Niq2 and Znq2 in the mesoporous silica revealed the excellent photoluminescence property.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

References

  1. 1.

    Y. Qin, P. She, X. Huang, W. Huang, Q. Zhao, Coor. Chem. Rev. 416, 213331 (2020)

    CAS  Google Scholar 

  2. 2.

    P. Shinde, S. Pandharipande, N. Thejokalyani, S.J. Dhoble, Optik 162, 151–160 (2018)

    CAS  Google Scholar 

  3. 3.

    P. Pimchan, N. Khaorapapong, M. Ogawa, Appl. Clay Sci. 54, 287–291 (2011)

    CAS  Google Scholar 

  4. 4.

    P. Pimchan, N. Khaorapapong, M. Ogawa, Appl. Clay Sci. 101, 223–228 (2014)

    CAS  Google Scholar 

  5. 5.

    B. Gao, X. Wei, Y. Zhang, Optic. Mater. 35, 536–542 (2013)

    CAS  Google Scholar 

  6. 6.

    M. Tagaya, S. Motozuka, Optic. Mater. 66, 392–398 (2017)

    CAS  Google Scholar 

  7. 7.

    K. Thangaraju, R. Kumaran, P. Ramamoorthy, V. Narayanan, J. Kumar, Optik 123, 1393–1396 (2012)

    CAS  Google Scholar 

  8. 8.

    O.B. Petrova, M.O. Anurova, A.A. Akkuzina, R.R. Saifutyarov, E.V. Ermolaeva, R.I. Avetisov, A.V. Khomyakov, I.V. Taydakov, I.C. Avetissov, Optic. Mater. 69, 41–147 (2017)

    Google Scholar 

  9. 9.

    A. Kitai, Luminescent Materials and Their Applications (Wiley, Chichester, 2008), p. 269

    Google Scholar 

  10. 10.

    A.V.S. Lourenço, C.A. Kodaira, E.R. Souza, M.C.F.C. Felinto, O.L. Malta, H.F. Brito, Optic. Mater. 33, 1548–1552 (2011)

    Google Scholar 

  11. 11.

    P. Li, Y. Wang, H. Li, G. Calzaferri, Angew. Chem. 126, 2948–2953 (2014)

    Google Scholar 

  12. 12.

    W. Shan, D. Zhang, X. Wang, D. Wang, Z. Xing, Y. Xiong, Y. Fan, Y. Yang, Micropor. Mesopor. Mater. 278, 44–53 (2019)

    CAS  Google Scholar 

  13. 13.

    M. Patriarcaa, V. Daiera, G. Camía, N. Pellegrib, E. Rivièrec, C. Hureaud, S. Signorella, Micropor. Mesopor. Mater. 279, 133–141 (2019)

    Google Scholar 

  14. 14.

    R. Narayan, U. Nayak, A. Raichur, S. Garg, Pharmaceutics. 10, 118 (2018)

    CAS  Google Scholar 

  15. 15.

    G. Wang, C. Wang, S. Sun, Sens. Actuat. B Chem. 255, 3400–3408 (2018)

    CAS  Google Scholar 

  16. 16.

    A. Vassilakopoulou, D. Papadatos, I. Koutselas, Micropor. Mesopor. Mater. 249, 165–175 (2017)

    CAS  Google Scholar 

  17. 17.

    C. Chircov, A. Spoială, C. Păun, L. Crăciun, D. Ficai, A. Ficai, E. Andronescu, S.C. Turculeţ, Molecules 25, 1–35 (2020)

    Google Scholar 

  18. 18.

    W. Wang, X. Ren, W. Yang, C. Zhang, H. Ru, Micropor. Mesopor. Mater. 275, 50–60 (2019)

    CAS  Google Scholar 

  19. 19.

    A.M. Kaczmarek, S. Abednatanzi, D. Esquivel, C. Krishnaraj, H.S. Jena, G. Wang, K. Leus, R.V. Deun, F.J. Romero-Salguero, P. Van Der Voort, Micropor. Mesopor. Mater. 291, 109687 (2019)

    Google Scholar 

  20. 20.

    J. Cui, H. Sun, Z. Luo, J. Sun, Z. Wen, Mater. Lett. 156, 42–45 (2015)

    CAS  Google Scholar 

  21. 21.

    J. Wang, W. Dou, A.M. Kirillov, W. Liu, C. Xu, R. Fang, L. Yang, Dalton Tran. 45, 18610–18621 (2016)

    CAS  Google Scholar 

  22. 22.

    Y.-J. Gu, B. Yan, Inorganica Chim. Acta. 408, 96–102 (2013)

    CAS  Google Scholar 

  23. 23.

    A. Badiei, H. Goldooz, G.M. Ziarani, A. Abbasi, J. Colloid Interface Sci. 357, 63–69 (2011)

    CAS  Google Scholar 

  24. 24.

    M. Sohmiya, M. Ogawa, Micropor. Mesopor. Mater. 142, 363–370 (2011)

    CAS  Google Scholar 

  25. 25.

    L. Liu, J. Zhang, X. Wang, W. Hou, X. Liu, M. Xu, J. Yang, B. Liang, Mater. Lett. 258, 126811 (2020)

    CAS  Google Scholar 

  26. 26.

    D. Wang, Q. Liu, D. Hou, H. Cheng, R.L. Frost, Appl. Clay Sci. 146, 195–200 (2017)

    CAS  Google Scholar 

  27. 27.

    Y. Zhang, Q. Wang, S. Gao, H. Jiang, C. Meng, Micropor. Mesopor. Mater. 266, 14–23 (2018)

    CAS  Google Scholar 

  28. 28.

    Q. Wang, Y. Zhang, S. Jia, Y. Han, J. Xu, C. Meng, Appl. Clay Sci. 174, 47–56 (2019)

    CAS  Google Scholar 

  29. 29.

    K.G. Vibulyaseak, S.B. Deepracha, M. Ogawa, J. Solid State Chem. 270, 162–172 (2018)

    Google Scholar 

  30. 30.

    R.A. Bakar, R. Yahya, S.N. Dan, Procedia Chem. 19, 189–195 (2016)

    Google Scholar 

  31. 31.

    S. Pimprom, K. Sriboonkham, P. Dittanet, K. Föttinger, G. Rupprechter, P. Kongkachuichay, J. Ind. Eng. Chem. 31, 156–166 (2015)

    CAS  Google Scholar 

  32. 32.

    M. Ogawa, N. Shimura, A. Ayral, Chem. Mater. 18, 1715–1718 (2006)

    CAS  Google Scholar 

  33. 33.

    K.J. Nakamura, Y. Ide, M. Ogawa, Mater. Lett. 65, 24–26 (2011)

    CAS  Google Scholar 

  34. 34.

    J.-J.F. Saceda, R.L. de Leon, K. Rintramee, S. Prayoonpokarach, J. Wittayakun, Quím. Nova 34, 1394–1397 (2011)

    CAS  Google Scholar 

  35. 35.

    W. Roschat, T. Siritanon, B. Yoosuk, V. Romarak, Energy Convers. Manag. 119, 453–462 (2016)

    CAS  Google Scholar 

  36. 36.

    S. Wang, P. Hao, S. Li, A. Zhang, Y. Guan, L. Zhang, Appl. Catal. A: Gen. 542, 174–181 (2017)

    CAS  Google Scholar 

  37. 37.

    S. Shen, A.E. Garcia-Bennett, Z. Liu, Q. Lu, Y. Shi, Y. Yan, C. Yu, W. Liu, Y. Cai, O. Terasaki, D. Zhao, J. Am. Chem. Soc. 127, 6780–6787 (2005)

    CAS  Google Scholar 

  38. 38.

    S. Besson, C. Ricolleau, T. Gacoin, C. Jacquiod, J.-P. Innocenzi, Microporous Mesoporous Mater. 60, 43–49 (2003)

    CAS  Google Scholar 

  39. 39.

    B. Li, H. Li, X. Zhang, P. Fan, L. Liu, B. Li, W. Dong, B. Zhao, Green Process. Synth. 8, 78–84 (2019)

    Google Scholar 

  40. 40.

    H. Li, Y. Li, Nanoscale 1, 128 (2009)

    CAS  Google Scholar 

  41. 41.

    T. Tsuboi, Y. Nakai, Y. Torii, Open Phys. 10, 524–528 (2012)

    CAS  Google Scholar 

  42. 42.

    T.A. Hopkins, K. Meerholz, S. Shaheen, M.L. Anderson, A. Schmidt, B. Kippelen, A.B. Padias, H.K. Hall Jr., N. Peyghambarian, N.R. Armstrong, Chem. Mater. 8, 344–351 (1996)

    CAS  Google Scholar 

  43. 43.

    X. Bing-she, H. Yu-ying, W. Hua, Z. He-feng, L. Xu-guang, C. Ming-wei, Solid State Commun. 136, 318–322 (2005)

    Google Scholar 

  44. 44.

    D.F. Shriver, P.W. Atkins, Inorganic Chemistry, 3rd edn. (Oxford University Press, New York, 2001), p. 851

    Google Scholar 

  45. 45.

    V.W.-W. Yam, K.M.-C. Wong, Chem. Commun. 47, 11579 (2011)

    CAS  Google Scholar 

  46. 46.

    K. Shcherbin, S. Odoulov, D.R. Evans, F. Ramaz, B. Briat, Proc. Spie. 10934, 109341H1-109341H7 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Chemistry, Faculty of Science and Technology, and Research and Development Institute, Rajabhat Maha Sarakham University for the facilities provided. Thanks for scholarship of Science and Mathematics Talented Teachers (PSMT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patcharaporn Pimchan.

Ethics declarations

Conflict of interest

The author wishes to confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pimchan, P., Tana, P. & Jansawang, N. The photoluminescence properties of hybrid materials of metal (II)-8-hydroxyquinoline into mesoporous silica. J. Korean Ceram. Soc. 58, 728–736 (2021). https://doi.org/10.1007/s43207-021-00147-z

Download citation

Keywords

  • Hybrid materials
  • Luminescence
  • Mesoporous silica
  • Transition metal complexes
  • 8-Hydroxyquinoline