Skip to main content

Fabrication and evaluation of C-ring strength of SiCf/SiC composite tube

Abstract

The SiCf/SiC composite tubes were manufactured by three different manufacturing methods: rotation CVI (chemical vapor infiltration), nanorod-assisted CVI, and forced CVI, and the C-ring compression strength of the tubes was evaluated. In the rotation CVI method, the supply route of the source gas greatly influenced the formation of a homogeneous microstructure, and supplying gas from both directions of the tube could improve the microstructure homogeneity. The longer the gas supply time from the inside to the outside, the better was the C-ring strength. In the nanorod-assisted CVI method, the existence of SiC nanorods increased the strength by 25% (338–429 MPa) and the macro-pore fraction by 44% (7.6% to 3.4%) compared to the conventional CVI tube. In tubes with large diameters (100 mm and 150 mm) made of forced CVI, meaningful strength values were measured even at values outside the range of 1 < b/t < 2, which is the boundary condition of the C-ring strength in standard test method. Therefore, further evaluation is necessary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source gas supply path

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    L. Longbiao, Introduction and overview of ceramic-matrix composites, pp 1–73, in Durability of Ceramic-Matrix Composites, Ch. 1, Woodhead Publishing (2020).

  2. 2.

    J. Steibel, Ceramic matrix composites taking flight at GE Aviation. Bull. Am. Ceram. Soc. 98(3), 30–33 (2019)

    Google Scholar 

  3. 3.

    J. Douglas Kiser, J. E. Grady, R. T. Bhatt, V. L. Wiesner, D. Zhu, Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center. Ceramics Expo 2016, April 26, Cleveland, Ohio (2016)

  4. 4.

    J.Y. Park, SiCf/SiC composites as core materials for Generation IV nuclear reactors, pp 441–470, in Structural materials for generation IV nuclear reactors, Ed. by Yvon Pascal, Ch. 12, Woodhead, (2016). https://doi.org/10.1016/B978-0-08-100906-2.00012-4

  5. 5.

    L. Hallstadius, S. Johnson, E. Lahoda, Cladding for high performance fuel. Prog. Nucl. Energy 57, 71–76 (2012). https://doi.org/10.1016/j.pnucene.2011.10.008

    CAS  Article  Google Scholar 

  6. 6.

    Y. Katoh, L.L. Snead, C.H. Henager Jr., T. Nozawa, T. Hinoki, A. Ivekovic´, S. Novak, S.M. Gonzalez de Vicente, Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455, 387–397 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.003

  7. 7.

    A. Kohyama, “CMC for Nuclear Applications,” pp. 353–384 in: W. Krenkel (Ed.), Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications, Ch.15, WILEY-VCH Verlag GmbH & Co., Weinheim, (2008). https://doi.org/10.1002/9783527622412.ch15

  8. 8.

    Alain Ravenet, “Corps D'assemblage de Combustible Nucleaire et un Assemblage de Combustible Nucleaire Comportant un Tel Corps,” WO/2011/042406 (2011).

  9. 9.

    L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan, Silicon carbide composites as fusion power reactor structural materials. J. Nucl. Mater. 417, 330–339 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.005

    CAS  Article  Google Scholar 

  10. 10.

    L. Giancarli, H. Golfier, S. Nishio, R. Raffray, C. Wong, R. Yamada, Progress in blanket designs using SiCf/SiC composites. Fusion Eng. Des. 61(62), 307–318 (2002)

    Article  Google Scholar 

  11. 11.

    S. Smolentsev, N.B. Morley, M. Abdou, Magnetohydrodynamic and thermal issues of the SiCf/SiC flow channel insert. Fusion Sci. Tech. 50, 107–119 (2006). https://doi.org/10.13182/FST06-A1226

    CAS  Article  Google Scholar 

  12. 12.

    D.J. Landini, J.E. Flinn, P.V. Kelsey, Jr., “The slit-ring test for evaluating fracture in tubular cross section,” pp.335–343 in Advances in Ceramics vol. 14, Ceramics in heat exchangers, Ed. by B.D. foster and J.B. Patton, The Am. Ceram. Soc. Inc., (1985)

  13. 13.

    O. Jadaan, “Testing for tubular components,” pp. 295–351 in Mechanical testing methodology for ceramic design and reliability, Ed. by D.C. Cranmer and D.W. Richerson, Marcel Dekker, Inc., USA (1998)

  14. 14.

    D. Kim, H.-G. Lee, Ji Yeon Park, Weon-Ju Kim, “Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications.” J. Nucl. Mater. 458, 29–36 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.117

    CAS  Article  Google Scholar 

  15. 15.

    ASTM C1323–10, Standard Test Method for Ultimate Strength of Advanced Ceramics with Diametrally Compressed C-Ring Specimens at Ambient Temperature, 2010.

  16. 16.

    JIS Z 2507, Sintered metal bearing – determination of radial crushing strength, 2000.

  17. 17.

    G.M. Jacobsen, J.D. Stone, H.E. Khalifa, C.P. Deck, C.A. Back, Investigation of the C-ring test for measuring hoop tensile strength of nuclear grade ceramic composites. J. Nucl. Mater. 452, 125–132 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.002

    CAS  Article  Google Scholar 

  18. 18.

    R. Naslain, Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Sci. Tech. 64, 155–170 (2004). https://doi.org/10.1016/S0266-3538(03)00230-6

    CAS  Article  Google Scholar 

  19. 19.

    Lazzeri, “CVI Processing of Ceramic Matrix Composites” pp 313–349, in Ceramics and Composites Processing Methods, Ed. by Narottam P. Bansal, Aldo R. Boccaccini, John Wiley & Sons, Inc., USA, 2012

  20. 20.

    T.M. Besmann, B.W. Sheldon, R.A. Lowden, D.P. Stinton, Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science 253, 1104–1109 (1991). https://doi.org/10.1126/science.253.5024.1104

    CAS  Article  Google Scholar 

  21. 21.

    T.M. Besmann, J.C. McKaughlin, H. Lin, Fabrication of Ceramic Composites : Forced CVI. J. Nucl. Mater. 219, 31–35 (1995)

    CAS  Article  Google Scholar 

  22. 22.

    J. Lamon, “Chemical vapor infiltrated SiC/SiC composites (CVI SiC/SiC),” pp. 55–76, in Handbook of Ceramic Composites, Ed. by N. Bansal , Kluwer Academic Publishers, Boston, USA, 2005.

  23. 23.

    B.J. Oh, Y.J. Lee, D.J. Choi, G.W. Hong, J.Y. Park, W.J. Kim, Fabrication of Carbon/Silicon carbide composites by Isothermal chemical vapor infiltration, using the Situ whiskering growing and matrix filling process. J. Am. Ceram. Soc. 84(1), 245–247 (2001)

    CAS  Article  Google Scholar 

  24. 24.

    Ji Yeon Park, Ho Soo Hwang, Weon-Ju Kim, Joung Il Kim, Ji Hye Son, Byeong Jun Oh, Doo Jin Choi, “ Fabrication and characterization of SiCf/SiC composite by CVI using the whiskering process,.” J. Nucl. Mater. 307–311, 1227–1231 (2002)

    Article  Google Scholar 

  25. 25.

    Suk Min Kang, Ji Yeon Park, Weon-Ju Kim, Soon Gil Yoon, Woo Seog Ryu, Densification of SiCf/SiC Composite by the Multistep of Whisker Growing and Matrix Filling. J. Nucl. Mater. 329–333, 530–533 (2004)

    Article  Google Scholar 

  26. 26.

    K. Watanbe, N. Suzumura, T. Nakamura, H. Murata, T. Araki, T. Natsumura, Development of CMC vane for gas turbine engine. Ceram. Eng. Sci. Proc. 24(4), 599–604 (2003)

    Article  Google Scholar 

  27. 27.

    Carlo Alberto Nannetti, Alberto Ortona, Dario A. de Pinto and Bruno Riccardi, “Manufacturing SiC-Fiber-Reinforced SiC Matrix Composites by Improved CVI/Slurry Infiltration/Polymer Impregnation and Pyrolysis,” J. Am. Ceram. Soc., 87[7], 1205–1209 (2004)

  28. 28.

    James A. Dicarlo, “Advances in SiC/SiC Composites for Aero-Propulsion,” pp 217–235, in Ceramic Matrix Composites Materials, Modeling and Technology, Edited by Narottam P. Bansal and Jacques Lamon, Ch. 7, John Wiley & Sons, Inc., USA (2015).

  29. 29.

    J.Y. Park, S.M. Kang, W.-J. Kim, W.S. Ryu, Characterization of the SiCf/SiC Composite Fabricated by the Whisker Growing Assisted CVI Process. Key Eng. Mater. 287, 200–205 (2005)

    CAS  Article  Google Scholar 

  30. 30.

    Ji Yeon Park, Sang Min Jeong, Daejong Kim, Hyeon-Geun Lee, Soon Gil Yoon, and Weon-Ju Kim, “Effects of Source Gas Flow Paths on the Matrix Infiltration Behaviors and Mechanical Properties of CVI-Processed SiCf/SiC Composite Tubes,” pp109–116 in Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development, Ceramic Transaction Volume 263, Ed by M. Singh, T. Ohji, S. Dong, D. Koch, K. Shimamura, B. Clauss, B. Heidenreich, J. Akedo, , John Wiley & Sons, Inc., (2017)

  31. 31.

    High temperature material characterization and advanced materials development, KAERI/RR-2515/2004 (2004)

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2017M2A84017642). This is a selected paper of 8th International Congress on Ceramics (ICC8).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ji Yeon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, J.Y., Kim, D., Lee, H.G. et al. Fabrication and evaluation of C-ring strength of SiCf/SiC composite tube. J. Korean Ceram. Soc. 58, 718–727 (2021). https://doi.org/10.1007/s43207-021-00146-0

Download citation

Keywords

  • SiCf/SiC tube
  • Manufacturing process
  • Chemical vapor infiltration
  • C-ring strength