Skip to main content
Log in

3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The electrochemical approach for the feasible ammonia production via N2 fixation is well-thought-out to be an eco-friendly strategy to replace the polluting Haber Bosch process. However, the impeding activation barrier of strong N≡N and the competing hydrogen evolution reaction constrain the Faradaic efficiency of the electrochemical nitrogen reduction reaction. Therefore, the implication of innovative strategies for designing an active electrocatalyst remains a crucial criterion to deliver operational efficiencies during electrochemical reactions. This study proposes a unique fabrication of three-dimensional (3D)-architectured electrodes encompassed with cobalt-rich tungsten carbide (Co-WC) as an electrocatalyst using a 3D-printing technique for the efficient electrochemical nitrogen reduction reaction. Here, the cobalt acts as a binder between tungsten carbide particles after sintering, and the particles are bonded to each other. The 3D-printing process generates 3D-architectured Co-WC electrodes with an average particle size of 1–3 µm through precise control of printing parameters. The electrochemical performance of the 3D-architectured Co-WC electrode reveals a better selectivity for N2 reduction under ambient condition. Substantially, the 3D-architectured Co-WC electrodes demonstrate an improved ammonia yield rate of 34.61 μg h−1 cm−2 and Faradaic efficiency of 2.12% at an applied potential − 0.6 V (vs. RHE). 3D-printing techniques can be an effective design method for manufacturing 3D-architectured active material with superior performance and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Wang, D.F.R. Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Materials, technological status, and fundamentals of PEM fuel cells–a review. Mater. Today 32, 178–203 (2020)

    Article  CAS  Google Scholar 

  2. Y. Shao, J.P. Dodelet, G. Wu, P. Zelenay, PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv. Mater. 31, 1807615 (2019)

    Article  Google Scholar 

  3. P.M. Bulemo, I.-D. Kim, Recent advances in ABO 3 perovskites: their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 57, 24–39 (2020)

    Article  CAS  Google Scholar 

  4. H.F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn− air batteries. Adv. Func. Mater. 28, 1803329 (2018)

    Article  Google Scholar 

  5. S. Woo, H. Cho, J. Kim, Y. Lee, S. Lee, Microwave synthesis of MWCNT-supported PtRuNi catalysts and their electrocatalytic activity for direct methanol fuel cells. J. Korean Ceram. Soc. 57, 192–199 (2020)

    Article  CAS  Google Scholar 

  6. G. Janani, Y. Chae, S. Surendran, Y. Sim, W. Park, J.K. Kim, U. Sim, Rational design of spinel oxide nanocomposites with tailored electrochemical oxygen evolution and reduction reactions for zincair batteries. Appl. Sci. 10, 3165 (2020)

    Article  CAS  Google Scholar 

  7. Y. Sim, S.J. Kim, G. Janani, Y. Chae, S. Surendran, H. Kim, S. Yoo, D.C. Seok, Y.H. Jung, C. Jeon, The synergistic effect of nitrogen and fluorine co-doping in graphene quantum dot catalysts for full water splitting and supercapacitor. Appl. Surf. Sci. 507, 145157 (2020)

    Article  CAS  Google Scholar 

  8. M. Peddigari, H. Palneedi, G.-T. Hwang, J. Ryu, Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J. Korean Ceram. Soc. 56, 1–23 (2019)

    Article  CAS  Google Scholar 

  9. Y. Li, H. Wang, C. Priest, S. Li, P. Xu, G. Wu, Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 33, 2000381 (2021)

    Article  CAS  Google Scholar 

  10. Y. Li, Z. Yin, X. Liu, M. Cui, S. Chen, T. Ma, Current progress of molybdenum carbide-based materials for electrocatalysis: potential electrocatalysts with diverse applications. Mater. Today Chem. 19, 100411 (2021)

    Article  CAS  Google Scholar 

  11. D. Liu, M. Chen, X. Du, H. Ai, K.H. Lo, S. Wang, S. Chen, G. Xing, X. Wang, H. Pan, Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Func. Mater. 31, 2008983 (2021)

    Article  CAS  Google Scholar 

  12. D.K. Yesudoss, G. Lee, S. Shanmugam, Strong catalyst support interactions in defect-rich γ-Mo2N nanoparticles loaded 2D-h-BN hybrid for highly selective nitrogen reduction reaction. Appl. Catal. B: Environ. 287, 119952 (2021)

    Article  CAS  Google Scholar 

  13. F. Haber, R.L. Rossignol, The production of synthetic ammonia. Ind. Eng. Chem. 5, 328–331 (1913)

    Article  Google Scholar 

  14. G. Duan, Y. Chen, Y. Tang, K.A.M. Gasem, P. Wan, D. Ding, M. Fan, Advances in electrocatalytic ammonia synthesis under mild conditions. Progress Energy Combust. Sci. 81, 100860 (2020)

    Article  Google Scholar 

  15. J. Hou, M. Yang, J. Zhang, Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 12, 6900–6920 (2020)

    Article  CAS  Google Scholar 

  16. J. John, D.-K. Lee, U. Sim, Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano Convergence 6, 1–16 (2019)

    Article  Google Scholar 

  17. J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166–169 (2013)

    Article  CAS  Google Scholar 

  18. D.S. Patil, S.A. Pawar, J.C. Shin, Alteration of Ag nanowires to Ag/Ag2S nanowires@ CdS core-shell architectures for electrochemical supercapacitors. J. Alloy. Compd. 768, 1076–1082 (2018)

    Article  CAS  Google Scholar 

  19. C. Wang, X.-G. Nie, Y. Shi, Y. Zhou, J.-J. Xu, X.-H. Xia, H.-Y. Chen, Direct plasmon-accelerated electrochemical reaction on gold nanoparticles. ACS Nano 11, 5897–5905 (2017)

    Article  CAS  Google Scholar 

  20. S. Surendran, S. Shanmugapriya, Y.S. Lee, U. Sim, R.K. Selvan, Carbon-enriched cobalt phosphide with assorted nanostructure as a multifunctional electrode for energy conversion and storage devices. ChemistrySelect 3, 12303–12313 (2018)

    Article  CAS  Google Scholar 

  21. Y.H. Kwok, A.C.H. Tsang, Y. Wang, D.Y.C. Leung, Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell. J. Power Sources 349, 75–83 (2017)

    Article  CAS  Google Scholar 

  22. J.-H. Park, S.-D. Yim, T. Kim, S.-H. Park, Y.-G. Yoon, G.-G. Park, T.-H. Yang, E.-D. Park, Understanding the mechanism of membrane electrode assembly degradation by carbon corrosion by analyzing the microstructural changes in the cathode catalyst layers and polarization losses in proton exchange membrane fuel cell. Electrochim. Acta 83, 294–304 (2012)

    Article  CAS  Google Scholar 

  23. P. Urchaga, T. Kadyk, S.G. Rinaldo, A.O. Pistono, J. Hu, W. Lee, C. Richards, M.H. Eikerling, C.A. Rice, Catalyst degradation in fuel cell electrodes: accelerated stress tests and model-based analysis. Electrochim. Acta 176, 1500–1510 (2015)

    Article  CAS  Google Scholar 

  24. H. Yu, Z. Wang, S. Yin, C. Li, Y. Xu, X. Li, L. Wang, H. Wang, Mesoporous Au3Pd film on Ni foam: A self-supported electrocatalyst for efficient synthesis of ammonia. ACS Appl. Mater. Interfaces. 12, 436–442 (2019)

    Article  Google Scholar 

  25. J. Zhang, Y. Wang, C. Zhang, H. Gao, L. Lv, L. Han, Z. Zhang, Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustain. Chem. Eng. 6, 2231–2239 (2018)

    Article  CAS  Google Scholar 

  26. C. Yu, F. Xu, L. Luo, H.S. Abbo, S.J.J. Titinchi, P.K. Shen, P. Tsiakaras, S. Yin, Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 317, 191–198 (2019)

    Article  CAS  Google Scholar 

  27. H. Yang, Z. Feng, X. Teng, L. Guan, H. Hu, M. Wu, Three-dimensional printing of high-mass loading electrodes for energy storage applications. InfoMat 3, 631 (2021)

    Article  CAS  Google Scholar 

  28. J.-H. Park, J.-H. Lee, D.J. Kim, K.-T. Hwang, J.-H. Kim, K.-S. Han, Ink-jet 3D printability of ceramic ink with contact angle control. J. Korean Ceram. Soc. 56, 461–467 (2019)

    Article  CAS  Google Scholar 

  29. K. Kim, A.P. Tiwari, T.G. Novak, S. Jeon, 3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. J. Korean Ceram. Soc 58, 379–398 (2021)

    Article  CAS  Google Scholar 

  30. H.E. Exner, J. Gurland, A review of parameters influencing some mechanical properties of tungsten carbide–cobalt alloys. Powder Metall. 13, 13–31 (1970)

    Article  CAS  Google Scholar 

  31. A.S. Kurlov, A.I. Gusev, Tungsten carbides. Springer Ser. Mater. Sci 184, 34–36 (2013)

    Google Scholar 

  32. L. Song, T. Wang, Y. Wang, H. Xue, X. Fan, H. Guo, W. Xia, H. Gong, J. He, Porous iron-tungsten carbide electrocatalyst with high activity and stability toward oxygen reduction reaction: from the self-assisted synthetic mechanism to its active-species probing. ACS Appl. Mater. Interfaces. 9, 3713–3722 (2017)

    Article  CAS  Google Scholar 

  33. H. Huang, F. Li, Q. Xue, Y. Zhang, S. Yin, Y. Chen, Salt-templated construction of ultrathin cobalt doped iron thiophosphite nanosheets toward electrochemical ammonia synthesis. Small 15, 1903500 (2019)

    Article  CAS  Google Scholar 

  34. L.F. Arenas, C.P. de León, F.C. Walsh, 3D-printed porous electrodes for advanced electrochemical flow reactors: a Ni/stainless steel electrode and its mass transport characteristics. Electrochem. Commun. 77, 133–137 (2017)

    Article  CAS  Google Scholar 

  35. X. Huang, S. Chang, W.S.V. Lee, J. Ding, J.M. Xue, Three-dimensional printed cellular stainless steel as a high-activity catalytic electrode for oxygen evolution. J. Mater. Chem. A 5, 18176–18182 (2017)

    Article  CAS  Google Scholar 

  36. J. Lölsberg, O. Starck, S. Stiefel, J. Hereijgers, T. Breugelmans, M. Wessling, 3D-printed electrodes with improved mass transport properties. ChemElectroChem 4, 3309–3313 (2017)

    Article  Google Scholar 

  37. L.F. Arenas, C.P. De León, F.C. Walsh, Three-dimensional porous metal electrodes: Fabrication, characterisation and use. Curr. Opin. Electrochem. 16, 1–9 (2019)

    Article  CAS  Google Scholar 

  38. M.-A. Porter, Effects of binder systems for metal injection moulding (2003)

  39. M.K. Agarwala, R.V. Weeren, R. Vaidyanathan, A. Bandyopadhyay, G. Carrasquillo, V. Jamalabad, N. Langrana, A. Safari, S.H. Garofalini, S.C. Danforth, Structural ceramics by fused deposition of ceramics. In: International Solid Freeform Fabrication Symposium (1995)

  40. M.A. Yardimci, S.I. Guceri, S.C. Danforth, Process Modeling for Fused Deposition of Ceramics (Wiley, New York, 1996), pp. 78–82

    Google Scholar 

  41. G. Wu, N.A. Langrana, S. Rangarajan, R. McCuiston, R. Sadanji, S.C. Danforth, A. Safari, Fabrication of metal components using FDMet: fused deposition of metals, In: Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, (1999), p. 775–782

  42. J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11, 840 (2018)

    Article  Google Scholar 

  43. S. Kumar, A. Czekanski, Optimization of parameters for SLS of WC-Co. Rapid Prototyp. J. 23, 1202 (2017)

    Article  CAS  Google Scholar 

  44. S. Kumar, Process chain development for additive manufacturing of cemented carbide. J. Manuf. Process. 34, 121–130 (2018)

    Article  Google Scholar 

  45. C.-W. Li, K.-C. Chang, A.-C. Yeh, On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting. J. Alloy. Compd. 782, 440–450 (2019)

    Article  CAS  Google Scholar 

  46. I. Fraunhofer, Droplet-based additive manufacturing of hard metal components by thermoplastic 3D printing (T3DP). J. Ceram. Sci. Technol. 8, 155–160 (2016)

    Google Scholar 

  47. K.-J. Jang, J.-H. Kang, J.G. Fisher, S.-W. Park, Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing. Dent. Mater. 35, e97–e106 (2019)

    Article  CAS  Google Scholar 

  48. R.K. Enneti, K.C. Prough, T.A. Wolfe, A. Klein, N. Studley, J.L. Trasorras, Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology. Int. J. Refract Metal Hard Mater. 71, 28–35 (2018)

    Article  CAS  Google Scholar 

  49. R.K. Enneti, K.C. Prough, Wear properties of sintered WC-12% Co processed via Binder Jet 3D Printing (BJ3DP). Int. J. Refract Metal Hard Mater. 78, 228–232 (2019)

    Article  CAS  Google Scholar 

  50. J.A. Lewis, Binder removal from ceramics. Annu. Rev. Mater. Sci. 27, 147–173 (1997)

    Article  CAS  Google Scholar 

  51. K.S. Hwang, Y.M. Hsieh, Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts. Metall. and Mater. Trans. A. 27, 245–253 (1996)

    Article  Google Scholar 

  52. A.G.P. Da Silva, W.D. Schubert, B. Lux, The role of the binder phase in the WC-Co sintering. Mater. Res. 4, 59–62 (2001)

    Article  Google Scholar 

  53. H.-W. Lee, H.-I. Ji, J.-H. Lee, B.-K. Kim, K.J. Yoon, J.-W. Son, Powder packing behavior and constrained sintering in powder processing of solid oxide fuel cells (SOFCs). J. Korean Ceram. Soc 56, 130–145 (2019)

    Article  CAS  Google Scholar 

  54. J. Garcia, V.C. Cipres, A. Blomqvist, B. Kaplan, Cemented carbide microstructures: a review. Int. J. Refract Metal Hard Mater. 80, 40–68 (2019)

    Article  CAS  Google Scholar 

  55. A. Moradkhani, H. Baharvandi, A. Naserifar, Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC nanocomposites. J. Korean Ceram. Soc 56, 256–268 (2019)

    Article  CAS  Google Scholar 

  56. P.L. Searle, The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review, Analyst 109, 549–568 (1984)

    Article  CAS  Google Scholar 

  57. Y. Moliner-Martínez, R. Herráez-Hernández, P. Campíns-Falcó, Improved detection limit for ammonium/ammonia achieved by berthelot’s reaction by use of solid-phase extraction coupled to diffuse reflectance spectroscopy. Anal. Chim. Acta 534, 327–334 (2005)

    Article  Google Scholar 

Download references

Funding

This work is supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF-2016M3D1A1021141) and Chonnam National University (Grant Number: 2019-0217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uk Sim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DK., Wee, SJ., Jang, KJ. et al. 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production. J. Korean Ceram. Soc. 58, 679–687 (2021). https://doi.org/10.1007/s43207-021-00142-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00142-4

Keywords

Navigation