Skip to main content

Review on transparent polycrystalline ceramics

Abstract

Since attempts were made to fabricate translucent polycrystalline alumina in the 1960s, considerable effort has been made to develop new transparent ceramics and improve their properties. The application of transparent ceramics nowadays is extensive, covering many areas. This review discusses the fundamentals of polycrystalline transparent ceramics, including a brief history, requirements for transparency, and important properties along with their feasible applications. In particular, details of γ-AlON are included as an example based on the constant anion lattice model and the authors’ results to help the readers’ understanding of transparent ceramics. Finally, the current research trend is explained to anticipate future research directions on transparent polycrystalline ceramics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. 1.

    J.E. Burke, MRS Bull. 21, 61–68 (1996). https://doi.org/10.1557/S0883769400046133

    CAS  Article  Google Scholar 

  2. 2.

    R.L. Coble, US Patent US3026210A (1962) https://patents.google.com/patent/US3026210A/en?oq=3026210

  3. 3.

    Chem. Eng. News Arch. 44, 38 (1966) https://doi.org/10.1021/cen-v044n043.p038a

  4. 4.

    R.C. Anderson, US Patent US3545987A (1970) https://patents.google.com/patent/US3545987A/en

  5. 5.

    P. Hogan, T. Stefanik, C. Willingham, R. Gentilman, Transparent Yttria for IR Windows and Domes—past and present. (2004) https://apps.dtic.mil/sti/pdfs/ADA460289.pdf. Accessed 7 Jun 2021

  6. 6.

    W.H. Rhodes, J. Am. Ceram. Soc. 64, 13–19 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb09551.x

    CAS  Article  Google Scholar 

  7. 7.

    P.L. Buckley, A study of the use of transparent yttrium oxide for ramjet combustion research. (Final Technical Report, 1981), http://www.dtic.mil/docs/citations/ADA120576. Accessed 7 Jun 2021

  8. 8.

    D.C. Harris, Infrared Phys. Technol. 39, 185–201 (1998). https://doi.org/10.1016/S1350-4495(98)00006-1

    CAS  Article  Google Scholar 

  9. 9.

    G.C. Wei, J. Phys. D. Appl. Phys. 38, 3057–3065 (2005). https://doi.org/10.1088/0022-3727/38/17/S07

    CAS  Article  Google Scholar 

  10. 10.

    D.O. McCreight, R.E. Birch, US Patent US2805167A (1957) https://patents.google.com/patent/US2805167A/en

  11. 11.

    W.T. Bakker, J.G. Lindsay, US Patent US3304153A (1967) https://patents.google.com/patent/US3304153A/en

  12. 12.

    L. Navias, US Patent US3083123A (1963) https://patents.google.com/patent/US3083123

  13. 13.

    D.W. Roy, F.J. Stermole, US Patent US3974249A (1976) https://patents.google.com/patent/US3974249

  14. 14.

    R.D. Bagley, US Patent US3531308A (1970) https://patents.google.com/patent/US3531308A/en

  15. 15.

    I. Warshaw, R. Roy, J. Am. Ceram. Soc. 42, 434–438 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb12970.x

    CAS  Article  Google Scholar 

  16. 16.

    J.S. Abell, I.R. Harris, B. Cockayne, B. Lent, J. Mater. Sci. 9, 527–537 (1974). https://doi.org/10.1007/bf00551870

    CAS  Article  Google Scholar 

  17. 17.

    G. de With, H.J.A. van Dijk, Mater. Res. Bull. 19, 1669–1674 (1984). https://doi.org/10.1016/0025-5408(84)90245-9

    Article  Google Scholar 

  18. 18.

    J.E. Geusic, H.M. Marcos, L.G. Van Uitert, Appl. Phys. Lett. 4, 182–184 (1964). https://doi.org/10.1063/1.1753928

    CAS  Article  Google Scholar 

  19. 19.

    Y. Goro, Y. Hiroaki, Bull. Chem. Soc. Jpn. 32, 1264–1265 (1959). https://doi.org/10.1246/bcsj.32.1264

    Article  Google Scholar 

  20. 20.

    J.W. McCauley, J. Am. Ceram. Soc. 61, 372–373 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09336.x

    CAS  Article  Google Scholar 

  21. 21.

    J.W. McCauley, N.D. Corbin, J. Am. Ceram. Soc. 62, 476–479 (1979). https://doi.org/10.1111/j.1151-2916.1979.tb19109.x

    CAS  Article  Google Scholar 

  22. 22.

    T.M. Hartnett, E.A. Maguire, R.L. Gentilman, N.D. Corbin, J.W. McCauley, Ceram. Eng. Sci. Proc. 3, 67–76 (1982). https://doi.org/10.1002/9780470318140.ch6

    CAS  Article  Google Scholar 

  23. 23.

    J.W. McCauley, N.D. Corbin, Prog. Nitrogen Ceram. 65, 111–118 (1983). https://doi.org/10.1007/978-94-009-6851-6_8

    CAS  Article  Google Scholar 

  24. 24.

    H.X. Willems, M.M.R.M. Hendrix, G. de With, R. Metselaar, J. Eur. Ceram. Soc. 10, 339–346 (1992). https://doi.org/10.1016/0955-2219(92)90089-V

    CAS  Article  Google Scholar 

  25. 25.

    R.N. Smartt, W.H. Steel, J. Opt. Soc. Am. 49, 710–712 (1959). https://doi.org/10.1364/josa.49.000710

    Article  Google Scholar 

  26. 26.

    J.G.J. Peelen, R. Metselaar, J. Appl. Phys. 45, 216–220 (1974). https://doi.org/10.1063/1.1662961

    CAS  Article  Google Scholar 

  27. 27.

    R. Apetz, M.P.B. Van Bruggen, J. Am. Ceram. Soc. 86, 480–486 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03325.x

    CAS  Article  Google Scholar 

  28. 28.

    C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. Zhang, J.L. Adam, J. Am. Ceram. Soc. 96, 3070–3074 (2013). https://doi.org/10.1111/jace.12570

    CAS  Article  Google Scholar 

  29. 29.

    H.J. Lee, W.S. Cho, H.J. Kim, H.T. Kim, S.S. Ryu, J. Korean Ceram. Soc. 54, 43–48 (2017). https://doi.org/10.4191/kcers.2017.54.1.06

    CAS  Article  Google Scholar 

  30. 30.

    Y. Wu, Opt. Mater. Express. 4, 2026–2031 (2014). https://doi.org/10.1364/ome.4.002026

    Article  Google Scholar 

  31. 31.

    M. Xiang, Y. Zhou, W. Xu, X. Li, K. Wang, W. Pan, J. Ceram. Soc. Jpn. 126, 241–245 (2018). https://doi.org/10.2109/jcersj2.17271

    CAS  Article  Google Scholar 

  32. 32.

    C.A. Klein, J. Appl. Phys. 96, 3172–3179 (2004). https://doi.org/10.1063/1.1782272

    CAS  Article  Google Scholar 

  33. 33.

    R.H. French, J. Am. Ceram. Soc. 73, 477–489 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06541.x

    CAS  Article  Google Scholar 

  34. 34.

    D.C. Harris, Materials for Infrared Windows and Domes: Properties and Performance (SPIE Press, Bellingham, 1999), p. 415

    Book  Google Scholar 

  35. 35.

    T.M. Hartnett, R.L. Gentilman, in Proc. SPIE 0505-advances in optical materials, ed. by S. Musikant (SPIE Press, San Diego, 1984), p. 15

  36. 36.

    G.D. Quinn, N.D. Corbin, J.W. McCauley, Am. Ceram. Soc. Bull. 63, 723–730 (1984)

    CAS  Google Scholar 

  37. 37.

    M.L. Bortz, R.H. French, D.J. Jones, R.V. Kasowski, F.S. Ohuchi, Phys. Scr. 41, 537–541 (1990). https://doi.org/10.1088/0031-8949/41/4/036

    CAS  Article  Google Scholar 

  38. 38.

    Y.N. Xu, Z. Quan-Gu, W. Ching, Phys. Rev. B 56, 14993–15000 (1997). https://doi.org/10.1103/PhysRevB.56.14993

    CAS  Article  Google Scholar 

  39. 39.

    J.M. Wahl, T.M. Hartnett, L.M. Goldman, R. Twedt, C. Warner, in Proc. SPIE 5786-Window and dome technologies and materials IX, ed. by R.W. Tustison (SPIE Press, Orlando, 2005), p. 71

  40. 40.

    A.I. Zagumennyi, G.B. Lutts, P.A. Popov, N.N. Sirota, I.A. Shcherbakov, Laser Phys. 3, 1064–1065 (1993)

    Google Scholar 

  41. 41.

    H. Furuse, R. Yasuhara, K. Hiraga, Opt. Mater. Express 4, 1794–1799 (2014). https://doi.org/10.1364/ome.4.001794

    CAS  Article  Google Scholar 

  42. 42.

    T. Ghrib, A.L. Al-Otaibi, M.A. Almessiere, A. Ashahri, I. Masoudi, Thermochim. Acta 654, 35–39 (2017). https://doi.org/10.1016/j.tca.2017.04.010

    CAS  Article  Google Scholar 

  43. 43.

    O.E. Taurian, M. Springborg, N.E. Christensen, Solid State Commun. 55, 351–355 (1985). https://doi.org/10.1016/0038-1098(85)90622-2

    CAS  Article  Google Scholar 

  44. 44.

    S. Heo, E. Cho, H.I. Lee, G.S. Park, H.J. Kang, T. Nagatomi, P. Choi, B.D. Choi, AIP Adv. 5, 077167 (2015). https://doi.org/10.1063/1.4927547

    CAS  Article  Google Scholar 

  45. 45.

    J.S. Lin, L.B. Weckesser, Johns Hopkins APL Tech. Dig. 13, 379–385 (1992)

    CAS  Google Scholar 

  46. 46.

    C.A. Klein, in Proc. SPIE 1997-High heat flux engineering II, ed. by A.M. Khounsary (SPIE Press, San Diego, 1993), p. 150

  47. 47.

    L. Lin, D. Wu, H. Ren, F. Zhu, Opt. Express 27, 10269–10279 (2019). https://doi.org/10.1364/oe.27.010269

    Article  Google Scholar 

  48. 48.

    W.J. Tropf, D.C. Harris, in Proc. SPIE 1112-Window and dome technologies and materials, ed. by P. Klocek (SPIE Press, Orlando, 1989), p. 9

  49. 49.

    J.H. Min, J. Lee, M.T. Ayman, H.N. Kim, Y.J. Park, D.H. Yoon, Ceram. Int. 46, 2895–2900 (2020). https://doi.org/10.1016/j.ceramint.2019.09.283

    CAS  Article  Google Scholar 

  50. 50.

    I.H. Malitson, F.V. Murphy, W.S. Rodney, J. Opt. Soc. Am. 48, 72–73 (1958). https://doi.org/10.1364/JOSA.48.000072

    Article  Google Scholar 

  51. 51.

    W.J. Tropf, M.E. Thomas, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1991)

    Google Scholar 

  52. 52.

    T.M. Hartnett, S.D. Bernstein, E.A. Maguire, R.W. Tustison, Infrared Phys. Technol. 39, 203–211 (1998). https://doi.org/10.1016/S1350-4495(98)00007-3

    CAS  Article  Google Scholar 

  53. 53.

    Y. Nigara, Jpn. J. Appl. Phys. 7, 404–408 (1968). https://doi.org/10.1143/jjap.7.404

    CAS  Article  Google Scholar 

  54. 54.

    D.E. Zelmon, D.L. Small, R. Page, Appl. Opt. 37, 4933–4935 (1998). https://doi.org/10.1364/ao.37.004933

    CAS  Article  Google Scholar 

  55. 55.

    M. Rubin, Sol. Energy Mater. 12, 275–288 (1985). https://doi.org/10.1016/0165-1633(85)90052-8

    CAS  Article  Google Scholar 

  56. 56.

    I.H. Malitson, J. Opt. Soc. Am. 55, 1205–1209 (1965). https://doi.org/10.1364/josa.55.001205

    CAS  Article  Google Scholar 

  57. 57.

    H. Hovestadt, Jena Glass and Its Scientific and Industrial Applications (Macmillan and Co, London, 1902)

    Google Scholar 

  58. 58.

    D.L. Wood, K. Nassau, Appl. Opt. 21, 2978–2981 (1982). https://doi.org/10.1364/ao.21.002978

    CAS  Article  Google Scholar 

  59. 59.

    J. Hrabovsky, M. Kucera, L. Palousova, L. Bi, M. Veis, Opt. Mater. Express. 11, 1218–1223 (2021). https://doi.org/10.7868/s0044457x16060192

    Article  Google Scholar 

  60. 60.

    Schott, Optical glass data sheet. (Schott website, 2019), https://www.schott.com/d/advanced_optics/ac85c64c-60a0-4113-a9df-23ee1be20428/1.17/schott-optical-glass-collection-datasheets-english-may-2019.pdf. Accessed 21 Jun 2021

  61. 61.

    J. Kim, Y.J. Kim, J. Korean Ceram. Soc. 57, 85–90 (2020). https://doi.org/10.1007/s43207-019-00007-x

    CAS  Article  Google Scholar 

  62. 62.

    J.W. Lee, J.M. Cha, J. Kim, H.C. Lee, C.B. Yoon, J. Korean Ceram. Soc. 56, 71–76 (2019). https://doi.org/10.4191/kcers.2019.56.1.04

    CAS  Article  Google Scholar 

  63. 63.

    G.K. Grandhi, H.J. Kim, N.S.M. Viswanath, H.B. Cho, J.H. Han, S.M. Kim, W.B. Im, J. Korean Ceram. Soc. 58, 28–41 (2021). https://doi.org/10.1007/s43207-020-00100-6

    CAS  Article  Google Scholar 

  64. 64.

    A. Wagner, Y. Meshorer, B. Ratzker, D. Sinefeld, S. Kalabukhov, S. Goldring, E. Galun, N. Frage, Sci. Rep. 11, 1512–1514 (2021). https://doi.org/10.1038/s41598-021-81194-8

    CAS  Article  Google Scholar 

  65. 65.

    A. Ikesue, Y.L. Aung, T. Taira, T. Kamimura, K. Yoshida, G.L. Messing, Annu. Rev. Mater. Res. 36, 397–429 (2006). https://doi.org/10.1146/annurev.matsci.36.011205.152926

    CAS  Article  Google Scholar 

  66. 66.

    D. Zhang, W. Xiao, C. Liu, X. Liu, J. Ren, B. Xu, J. Qiu, Nat. Commun. 11, 1–8 (2020). https://doi.org/10.1038/s41467-020-16649-z

    CAS  Article  Google Scholar 

  67. 67.

    Y.N. Ahn, K.D. Kim, G. Anoop, G.S. Kim, J.S. Yoo, Sci. Rep. 9, 1–10 (2019). https://doi.org/10.1038/s41598-019-53269-0

    CAS  Article  Google Scholar 

  68. 68.

    S.H. Jeong, J.Y. Kim, X. Xiao, Y.S. Kim, Optik 234, 166590 (2021). https://doi.org/10.1016/j.ijleo.2021.166590

    CAS  Article  Google Scholar 

  69. 69.

    D. Li, B.L. Clark, D.A. Keszler, P. Keir, J.F. Wager, Chem. Mater. 12, 268–270 (2000). https://doi.org/10.1021/cm9904234

    CAS  Article  Google Scholar 

  70. 70.

    J.L. Leaño Jr., C.O.M. Mariano, W.T. Huang, S. Mahlik, T. Lesniewski, M. Grinberg, H.S. Sheu, S.F. Hu, R.S. Liu, A.C.S. Appl, Mater. Interfaces 12, 23165–23171 (2020). https://doi.org/10.1021/acsami.0c07345

    CAS  Article  Google Scholar 

  71. 71.

    E.F. Schubert, J.K. Kim, Science 308, 1274–1278 (2005). https://doi.org/10.1126/science.1108712

    CAS  Article  Google Scholar 

  72. 72.

    H.W. Chen, R.D. Zhu, J. He, W. Duan, W. Hu, Y.Q. Lu, M.C. Li, S.L. Lee, Y.J. Dong, S.T. Wu, Light Sci. Appl. 6, 1–10 (2017). https://doi.org/10.1038/lsa.2017.43

    CAS  Article  Google Scholar 

  73. 73.

    T. Mah, T.A. Parthasarathy, L.E. Matson, in 14th Annual Conference on Composites and Advanced Ceramic Materials, ed. by J.B. Wachtman (John Wiley and Sons Inc., 1990), p. 1617 https://doi.org/10.1002/9780470313053.ch36

  74. 74.

    L. Mezeix, D.J. Green, Int. J. Appl. Ceram. Technol. 3, 166–176 (2006). https://doi.org/10.1111/j.1744-7402.2006.02068.x

    CAS  Article  Google Scholar 

  75. 75.

    W. Jiang, X. Cheng, Z. Xiong, Z. Ma, T. Ali, H. Cai, J. Zhang, Ceram. Int. 45, 12256–12263 (2019). https://doi.org/10.1016/j.ceramint.2019.03.136

    CAS  Article  Google Scholar 

  76. 76.

    T. Vasilos, J.B. Mitchell, R.M. Spriggs, J. Am. Ceram. Soc. 47, 606–610 (1964). https://doi.org/10.1111/j.1151-2916.1964.tb13115.x

    CAS  Article  Google Scholar 

  77. 77.

    S.S. Smith, B.J. Pletka, in Fracture mechanics of ceramics, ed. By R.C. Bradt, A.G. Evans, D.P.H. Hasselman, F.F. Lange, vol. 6 (Springer US, New York, 1983), p. 189

  78. 78.

    W.C. Wagner, T.M. Chu, J. Prosthet. Dent. 76, 140–144 (1996). https://doi.org/10.1016/S0022-3913(96)90297-8

    CAS  Article  Google Scholar 

  79. 79.

    P.J. Patel, G.A. Gilde, P.G. Dehmer, J.W. McCauley, AMPTIAC Newsl. 4, 1–21 (2000). https://doi.org/10.1016/b978-0-444-41928-6.50010-7

    Article  Google Scholar 

  80. 80.

    J.J. Swab, J.C. LaSalvia, G.A. Gilde, P.J. Patel, M.J. Motyka, in 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures-B, ed. by E. Ustundag, G. Fischman (Wiley, 1999) p. 79 https://doi.org/10.1002/9780470294574

  81. 81.

    R.L. Gentilman, Infrared Opt. Transm. Mater. 683, 1–10 (1986). https://doi.org/10.1117/12.936409

    Article  Google Scholar 

  82. 82.

    K. Shibata, H. Nakamura, A. Fujii, Wind. Dome Technol. Mater. 1326, 48–53 (1990). https://doi.org/10.1117/12.22480

    CAS  Article  Google Scholar 

  83. 83.

    M. Ramisetty, S. Sastri, U. Kashalikar, L.M. Goldman, N. Nag, Am. Ceram. Soc. Bull. 92, 20–25 (2013)

    CAS  Google Scholar 

  84. 84.

    A. Dey, R. Chakraborty, P. Bandyopadhyay, N. Biswas, M. Bhattacharya, S. Acharya, A.K. Mukhopadhyay, in Nanoindentation of Brittle Solids, ed. By A. Dey, A.K. Mukhopadhyay (CRC Press, Boca Raton, 2014), p. 63 https://doi.org/10.1201/b17110

  85. 85.

    L.F. He, Y.W. Bao, J.Y. Wang, M.S. Li, Y.C. Zhou, Acta Mater. 57, 2765–2774 (2009). https://doi.org/10.1016/j.actamat.2009.02.027

    CAS  Article  Google Scholar 

  86. 86.

    S.J. Wu, P.C. Chin, H. Liu, Appl. Sci. 9, 2067 (2019). https://doi.org/10.3390/app9102067

    CAS  Article  Google Scholar 

  87. 87.

    G.D. Quinn, B. Sparenberg, P. Koshy, L. Ives, S. Jahanmir, D. Arola, J. Test. Eval. 37, 222–244 (2009). https://doi.org/10.1520/jte101649

    CAS  Article  Google Scholar 

  88. 88.

    J.B. Wachtman, W.R. Cannon, M.J. Matthewson, Mechanical Properties of Ceramics, 2nd edn. (Wiley, New York, 2009), pp. 98–101

    Book  Google Scholar 

  89. 89.

    A. Kelly, N.H. MacMillan, Strong Solids, 3rd edn. (Clarendon Press, Oxford, 1986)

    Google Scholar 

  90. 90.

    A.A. Griffith, Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921). https://doi.org/10.1098/rsta.1921.0006

    Article  Google Scholar 

  91. 91.

    A.A. Griffith, in Proceedings of the first International Congress for Applied Mechanics, ed. by C.B. Biezeno, J.M. Burgers (J. Waltman, Jr., Delft, 1924), p. 55

  92. 92.

    E. Straßburger, J. Eur. Ceram. Soc. 29, 267–273 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.03.049

    CAS  Article  Google Scholar 

  93. 93.

    N.D. Corbin, J. Eur. Ceram. Soc. 5, 143–154 (1989). https://doi.org/10.1111/j.1151-2916.1978.tb09336.x

    CAS  Article  Google Scholar 

  94. 94.

    P. Tabary, C. Servant, Calphad 22, 179–201 (1998). https://doi.org/10.1016/S0364-5916(98)00023-6

    CAS  Article  Google Scholar 

  95. 95.

    J.W. McCauley, P. Patel, M. Chen, G. Gilde, E. Strassburger, B. Paliwal, K.T. Ramesh, D.P. Dandekar, J. Eur. Ceram. Soc. 29, 223–236 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.03.046

    CAS  Article  Google Scholar 

  96. 96.

    J.H. Min, J. Lee, D.H. Yoon, J. Eur. Ceram. Soc. 39, 4673–4679 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.030

    CAS  Article  Google Scholar 

  97. 97.

    F. Cheng, F. Zhang, J. Wang, H. Zhang, R. Tian, Z. Zhang, S. Wang, J. Alloys Compd. 650, 753–757 (2015). https://doi.org/10.1016/j.jallcom.2015.08.028

    CAS  Article  Google Scholar 

  98. 98.

    X. Li, J. Luo, Y. Zhou, J. Eur. Ceram. Soc. 35, 2027–2032 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.01.014

    CAS  Article  Google Scholar 

  99. 99.

    S. Qi, X.J. Mao, B.Y. Chai, L. Zhang, in Key engineering materials, vol. 697, ed. by W. Pan, J. Gong (Trans Tech Publications Ltd., Ottawa, 2016), p. 7 https://doi.org/10.4028/www.scientific.net/KEM.697.7

  100. 100.

    J. Wang, F. Zhang, F. Chen, J. Zhang, H. Zhang, R. Tian, Z. Wang, J. Liu, Z. Zhang, S. Chen, S. Wang, J. Eur. Ceram. Soc. 35, 23–28 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.07.016

    CAS  Article  Google Scholar 

  101. 101.

    M.T. Ayman, M.D. Kim, D.H. Yoon, J. Eur. Ceram. Soc. 40, 3235–3243 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.027

    CAS  Article  Google Scholar 

  102. 102.

    A.J. Stevenson, B.C. Bittel, C.G. Leh, X. Li, E.C. Dickey, P.M. Lenahan, G.L. Messing, Appl. Phys. Lett. 98, 1–3 (2011). https://doi.org/10.1063/1.3549872

    CAS  Article  Google Scholar 

  103. 103.

    J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, Appl. Phys. Lett. 85, 3696–3698 (2004). https://doi.org/10.1063/1.1808501

    CAS  Article  Google Scholar 

  104. 104.

    D. Luo, L. Wang, S. Wing, H. Zhang, R.J. Xie, RSC Adv. 7, 25964–25968 (2017). https://doi.org/10.1039/C7RA04614F

    CAS  Article  Google Scholar 

  105. 105.

    J.W. Xu, G.Q. Chen, Results Phys. 15, 102648 (2019). https://doi.org/10.1016/j.rinp.2019.102648

    Article  Google Scholar 

  106. 106.

    S. Kitajima, H. Nakao, A. Shirakawa, H. Yagi, T. Yanagitani, in Laser Congress (ASSL, LAC) (2017) https://doi.org/10.1364/ASSL.2017.JM5A.32

  107. 107.

    K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, A.A. Kaminskii, Phys. Stat. Sol. (2005). https://doi.org/10.1002/pssa.200409078

    Article  Google Scholar 

  108. 108.

    J. Kong, D.Y. Tang, C.C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Opt. Lett. (2007). https://doi.org/10.1364/OL.32.000247

    Article  Google Scholar 

  109. 109.

    F. Chen, J. Ma, C. Wei, R. Zhu, W. Zhou, Q. Yuan, S. Pan, J.Y. Zhang, Y. Wen, J. Dou, Opt. Express (2017). https://doi.org/10.1364/OE.25.032783

    Article  Google Scholar 

  110. 110.

    T. Benitez, S.Y. Gómez, A.P.N. de Oliveira, N. Travitzky, D. Hotza, Ceram. Int. 43, 13031–13046 (2017). https://doi.org/10.1016/j.ceramint.2017.07.205

    CAS  Article  Google Scholar 

  111. 111.

    B. Zhang, X. Guo, Y. Liu, L. Lang, S. Tan, Int. J. Light. Mater. Manuf. 4, 397–404 (2021). https://doi.org/10.1016/j.ijlmm.2021.05.002

    CAS  Article  Google Scholar 

  112. 112.

    F. Fu-kang, A.K. Kuznetsov, E.K. Keler, Bull. Acad. Sci. USSR Div. Chem. Sci. 13, 1070–1075 (1964). https://doi.org/10.1007/BF00863103

    Article  Google Scholar 

  113. 113.

    Y. Ji, D. Jiang, T. Fen, J. Shi, Mater. Res. Bull. 40, 553–559 (2005). https://doi.org/10.1016/j.materresbull.2004.10.010

    CAS  Article  Google Scholar 

  114. 114.

    M.A. Subramanian, G. Aravamudan, G.V.S. Rao, Prog. Solid. State. Chem. 15, 55–143 (1983). https://doi.org/10.1016/0079-6786(83)90001-8

    CAS  Article  Google Scholar 

  115. 115.

    R.D. Shannon, A.W. Sleight, Inorg. Chem. 7, 1649–1651 (1968)

    CAS  Article  Google Scholar 

  116. 116.

    A.F. Reid, C. Li, A.E. Ringwood, J. Solid. State. Chem. 20, 219–226 (1977). https://doi.org/10.1016/0022-4596(77)90157-8

    CAS  Article  Google Scholar 

  117. 117.

    A. Borisevich, M. Korzhik, P. Lecoq, Nucl. Instrum. Methods Phys. Res. A. 497, 206–209 (2003). https://doi.org/10.1016/S0168-9002(02)01913-7

    CAS  Article  Google Scholar 

  118. 118.

    N.J. Cherepy, S.A. Payne, S.J. Asztalos, G. Hull, J.D. Kuntz, T. Niedermayr, S. Pimputkar, J.J. Roberts, R.D. Sanner, T.M. Tillotson, E. van Loef, C.M. Wilson, K.S. Shah, U.N. Roy, R. Hawrami, A. Burger, L.A. Boatner, W.-S. Choong, W.W. Moses, IEEE Trans. Nucl. Sci. 56, 873–880 (2009)

    CAS  Article  Google Scholar 

  119. 119.

    Y.M. Ji, D.Y. Jiang, Y.K. Liao, J.L. Shi, in Key engineering materials vol. 280–283, ed. by W. Pan, J. Gong, C.C. Ge, J.F. Li (Trans Tech Publications Ltd., Bristol, 2005), p. 577 https://doi.org/10.4028/www.scientific.net/KEM.280-283.577

  120. 120.

    L. An, A. Ito, T. Goto, J. Eur. Ceram. Soc. 31, 237–240 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.09.010

    CAS  Article  Google Scholar 

  121. 121.

    G. Zhou, Z. Wang, B. Zhou, Y. Zhao, G. Zhang, S. Wang, Opt. Mater. (Amst). 35, 774–777 (2013). https://doi.org/10.1016/j.optmat.2012.09.016

    CAS  Article  Google Scholar 

  122. 122.

    H. Yi, Z. Wang, G. Zhou, J. Zhang, S. Wang, Ceram. Int. 42, 2070–2073 (2016). https://doi.org/10.1016/j.ceramint.2015.09.070

    CAS  Article  Google Scholar 

  123. 123.

    H. Ohtani, S. Matsumoto, B. Sundman, T. Sakuma, M. Hasebe, Mat. Trans. 46, 1167–1174 (2005). https://doi.org/10.2320/matertrans.46.1167

    CAS  Article  Google Scholar 

  124. 124.

    R.A. McCauley, J. Appl. Phys. 51, 290–294 (1980). https://doi.org/10.1063/1.327368

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program funded by the Korea Ministry of Education (NRF-2018R1D1A1B07043343). The authors also thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) for technical support regarding in-line absorbance and photoluminescence spectra measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dang-Hyok Yoon.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsabit, A.M., Yoon, DH. Review on transparent polycrystalline ceramics. J. Korean Ceram. Soc. (2021). https://doi.org/10.1007/s43207-021-00140-6

Download citation

Keywords

  • Transparent ceramics
  • Band gap
  • Birefringence
  • Optical properties
  • γ-AlON