Skip to main content

An electric field-assisted photochemical metal–organic deposition allowing control of oxygen content for resistive switching in directly patterned TiOx films

Abstract

Resistive RAM (ReRAM) is a promising candidate for next-generation non-volatile memory; it uses resistive switching behavior by electrochemical migration of oxygen vacancies inside of transition metal oxides. Controlling the oxygen content of the resistive switching material is required during the film deposition step for resistive switching to occur. This study Pledemonstrated an electric field-assisted photochemical metal–organic deposition (EFAPMOD) method for controlling the oxygen content of amorphous phase TiOx thin film, a commonly used material for ReRAM. Various voltages (0, + 10, + 15, + 20 V) were applied using a specially designed photomask coated with a transparent conductive oxide film during the photochemical reaction by UV irradiation. As a result, the oxygen content at the film top surface could be controlled according to the magnitude of applied voltage. This effect was confirmed by X-ray photoelectron spectroscopy (XPS) and I–V characteristic measurement. The applied positive voltage induced high oxygen content at the top interface of the TiOx film, and the local region possessing high oxygen content (high resistance) induced a resistive switching event. The TiOx amorphous film formed by EFAPMOD + 20 V showed stable and consistent resistive switching behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    O. Auciello, J.F. Scott, R. Ramesh, The physics of ferroelectric memories. Phys. Today 51(7), 22–27 (1998)

    CAS  Article  Google Scholar 

  3. 3.

    S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276(5310), 238–240 (1997)

    CAS  Article  Google Scholar 

  4. 4.

    J. Lee, S. Choi, C. Lee, Y. Kang, D. Kim, GeSbTe deposition for the PRAM application. Appl. Surf. Sci. 253(8), 3969–3976 (2007)

    CAS  Article  Google Scholar 

  5. 5.

    Z. Li, S. Zhang, Domain-wall dynamics driven by adiabatic spin-transfer torques. Phys. Rev. B 70(2), 024417 (2004)

    Article  Google Scholar 

  6. 6.

    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    CAS  Article  Google Scholar 

  7. 7.

    H.-S. Lee, S.G. Choi, H.-H. Park, M.J. Rozenberg, A new route to the Mott–Hubbard metal-insulator transition: strong correlations effects in Pr0.7Ca0.3MnO3. Sci. Rep. 3(1), 1704 (2013)

    Article  Google Scholar 

  8. 8.

    H.-S. Lee, H.-H. Park, M.J. Rozenberg, Manganite-based memristive heterojunction with tunable non-linear I–V characteristics. Nanoscale 7(15), 6444–6450 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    H.-S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong, J. Yuan, K. Su, M.C. Hersam, Dual-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30(45), 2003683 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memrisitve switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    H.-T. Zhang, L. Guo, G. Stone, L. Zhang, Y.-X. Zheng, E. Freeman, D.W. Keefer, S. Chaudhuri, H. Paik, J.A. Moyer, Imprinting of local metallic states into VO2 with ultraviolet light. Adv. Funct. Mater. 26(36), 6612–6618 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    Y. Park, D. Yoon, K. Fukutani, R. Stania, J. Son, Steep-slope threshold switch enabled by pulsed-laser-induced phase transformation. ACS Appl. Mater. Interfaces. 11(27), 24221–24229 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    CAS  Article  Google Scholar 

  14. 14.

    S.-E. Kim, J.-G. Lee, I.-Y. Choi, H.-E. Kim, H.-S. Lee, Resistive switching characteristic of Ce0.9Y0.1O2/TiO2 bi layer structure by photochemical metal organic deposition. J. Korean Ceram. Soc. 57(1), 73–79 (2020)

    CAS  Article  Google Scholar 

  15. 15.

    E. Carlos, R. Branquinho, R. Martins, A. Kiazadeh, E. Fortunato, Recent progress in solution-based metal oxide resistive switching devices. Adv. Mater. 33(7), 2004328 (2021)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, K.-M. Kang, M. Kim, H.-S. Lee, R. Waser, D. Wouters, R. Dittmann, J.J. Yang, H.-H. Park, Mott-transition-based RRAM. Mater. Today 28, 63–80 (2019)

    Article  Google Scholar 

  17. 17.

    Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, W.D. Lu, Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203–2211 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    S. Tradel, G. Li, X. Zhang, R.H. Hill, Positive and negative lithography by photochemical metalorganic deposition from metal 2-ethylhexanoates. J. Photopolym Sci. Technol. 19, 467–475 (1998)

    Article  Google Scholar 

  23. 23.

    G.E. Buono-Core, G. Cabello, A.H. Klahn, A. Lucero, M.V. Nunez, B. Torrejon, C. Castillo, Growth and characterization of molybdenum oxide thin films prepared by photochemical metal-organic deposition (PMOD). Polyhedron 29, 1551–1554 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    V. Jousseaume, J. Buckley, Y. Bernard, P. Gonon, C. Vallée, M. Mougenot, H. Feldis, S. Minoret, G. Chamiot-Maitral, A. Persico, A. Zenasni, M. Gely, J.P. Barnes, E. Martinez, H. Grampeix, C. Guedj, J.F. Nodin, B. De Salvo, Back-end-of-line integration approaches for resistive memories. 2009 IEEE Int. Interconnect Technology Conf. (Sapporo, Japan, 1–3 June 2009), pp. 41–43 (2009)

  25. 25.

    H.S.P. Wong, H.Y. Lee, S.M. Yu, Y.S. Chen, Y. Wu, P.S. Chen, B. Lee, F.T. Chen, M.J. Tsai, Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    S.-M. Kim, H.G. Moon, H.-S. Lee, Resistive switching characteristics of directly patterned Y-doped CeO2 by photochemical organic-metal deposition. Ceram. Int. 46(14), 22831–22836 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    H.-H. Park, H.-S. Lee, H.-H. Park, X. Zhang, R.H. Hill, Fabrication of sub 50-nm direct-patterned Pb(Zr, Ti)O3 films by electron beam-induced metal-organic deposition. J. Electroceram. 24, 214–218 (2010)

    CAS  Article  Google Scholar 

  28. 28.

    H.-H. Park, X. Zhang, S.-W. Lee, K.-D. Kim, D.-G. Choi, J.-H. Choi, J. Lee, E.-S. Lee, H.-H. Park, R.H. Hill, J.-H. Jeong, Facile nanopatterning of zirconium dioxide films via direct ultraviolet-assisted nanoimprint lithography. J. Mater. Chem. 21, 657–662 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    C. Binet, A. Badri, M. Boutonnet-Kizling, J.C. Lavalley, FTIR study of carbon monoxide adsorption on ceria: CO22 carbonite dianion adsorbed species. J. Chem. SoC. Faraday Trans. 90, 1023–1028 (1994)

    CAS  Article  Google Scholar 

  30. 30.

    H.H. Park, H.H. Park, R.H. Hill, Direct-patterning of SnO2 thin film by photochemical metal-organic deposition. Sens. Actuator A-Phys. 132, 429–433 (2006)

    CAS  Article  Google Scholar 

  31. 31.

    H.H. Park, S. Yoon, H.H. Park, R.H. Hill, Electrical properties of PZT thin films by photochemical deposition. Thin Solid Films 447, 699–673 (2004)

    Google Scholar 

  32. 32.

    J.W. Lee, D.K. Kim, Carboxymethyl group activation of dextran cross-linked superparamagnetic iron oxide nanoparticles. J. Korean Ceram. Soc. 58(1), 106–115 (2021)

    CAS  Article  Google Scholar 

  33. 33.

    J. Zhao, M. Zhang, S. Wan, Z. Yang, C.S. Hwang, Highly flexible resistive switching memory based on the electronic switching mechanism in the Al/TiO2/Al/polyimide structure. ACS Appl. Mater. Interfaces 10(2), 1828–1835 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    G. Rajender, J. Kumar, P.K. Giri, Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Appl. Catal. B. 224, 960–972 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    D.-H. Hop, R.B.K. Chung, Y.-W. Heo, J.-J. Kim, J.-H. Lee, Oxygen nonstoichiometry and electrical properties of La2xSrxNiO4+δ (0 ≤ x ≤ 05). J. Korean Ceram. Soc. 57(4), 416–422 (2020)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Park, H. Sim, M. Jo, G.-Y. Kim, D. Yoon, H. Han, Y. Kim, K. Song, D. Lee, S.-Y. Choi, Directional ionic transport across the oxide interface enables low-temperature epitaxy of rutile TiO2. Nat. Commun. 11(1), 1–10 (2020)

    Article  Google Scholar 

  37. 37.

    F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 578168 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIT) (2019R1F1A1059637) and the Ministry of Trade, Industry and Energy (MOTIE, Korea) under the Industrial Strategic Technology Development Program. No. 10068075, 'Development of Mott-transition-based forming-less non-volatile resistive switching memory and array'. Device fabrication and analysis were supported by 2018 Research Grant (PoINT) from Kangwon National University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong-Sub Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, SE., Lee, HS. An electric field-assisted photochemical metal–organic deposition allowing control of oxygen content for resistive switching in directly patterned TiOx films. J. Korean Ceram. Soc. (2021). https://doi.org/10.1007/s43207-021-00139-z

Download citation

Keywords

  • Titanium oxide
  • Resistive switching
  • Resistive RAM
  • Photochemical metal–organic deposition
  • Electric field assisted