Skip to main content

Advertisement

Log in

Stable colloidal quantum dot-based infrared photodiode: multiple passivation strategy

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

PbS colloidal quantum dots (QDs) are promising infrared detecting materials because of their widely tunable bandgap spanning the visible to the mid-infrared region, low exciton binding energy, and high electron and hole mobility. PbS QD photodiodes (PDs) exhibit high specific detectivity and high energy convergence efficiency. However, the performance of PbS QDPDs has been limited by the poor degree of ligand passivation on PbS QDs, resulting in oxidation and aggregation of the QDs. Herein, we review the surface morphology of PbS QDs and advanced methods for surface passivation of large PbS QDs. The various methods highlighted in this article provide scientific insight for promoting the commercialization of PbS QDPDs in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material (data transparency)

Not applicable.

Code availability (software application or custom code)

Not applicable.

References

  1. S.W. Baek, P. Molet, M.J. Choi, M. Biondi, O. Ouellette, J. Fan, S. Hoogland, F.P. García de Arquer, A. Mihi, E.H. Sargent, Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Adv. Mater. 31, 1–7 (2019)

    Article  CAS  Google Scholar 

  2. X. Yang, L. Hu, H. Deng, K. Qiao, C. Hu, Z. Liu, S. Yuan, J. Khan, D. Li, J. Tang, H. Song, C. Cheng, Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano Micro Lett. 9, 1–10 (2017)

    Article  CAS  Google Scholar 

  3. X. Xiao, K. Xu, M. Yin, Y. Qiu, W. Zhou, L. Zheng, X. Cheng, Y. Yu, Z. Ning, High quality silicon: colloidal quantum dot heterojunction based infrared photodetector. Appl. Phys. Lett. 116, 101102 (2020)

    Article  CAS  Google Scholar 

  4. C. Dong, S. Liu, N. Barange, J. Lee, T. Pardue, X. Yi, S. Yin, F. So, Long-wavelength lead sulfide quantum dots sensing up to 2600 nm for short-wavelength infrared photodetectors. ACS Appl. Mater. Interfaces 11, 44451–44457 (2019)

    Article  CAS  Google Scholar 

  5. N. Huo, S. Gupta, G. Konstantatos, MoS2–HgTe quantum dot hybrid photodetectors beyond 2 µm. Adv. Mater. 29, 1–5 (2017)

    Article  CAS  Google Scholar 

  6. M. Vafaie, J.Z. Fan, A.M. Najarian, O. Ouellette, L.K. Sagar, K. Bertens, B. Sun, F.P.G. de Arquer, E.H. Sargent, Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm. Matter 4, 1042–1053 (2021)

    Article  CAS  Google Scholar 

  7. R. Sliz, M. Lejay, J.Z. Fan, M.J. Choi, S. Kinge, S. Hoogland, T. Fabritius, F.P. Garciá De Arquer, E.H. Sargent, Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 13, 11988–11995 (2019)

    Article  CAS  Google Scholar 

  8. W. Zhou, Y. Shang, F.P. García de Arquer, K. Xu, R. Wang, S. Luo, X. Xiao, X. Zhou, R. Huang, E.H. Sargent, Z. Ning, Solution-processed upconversion photodetectors based on quantum dots. Nat. Electron. 3, 251–258 (2020)

    Article  CAS  Google Scholar 

  9. H. Lu, G.M. Carroll, N.R. Neale, M.C. Beard, Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 13, 939–953 (2019)

    CAS  Google Scholar 

  10. B. Sun, O. Ouellette, F.P. García de Arquer, O. Voznyy, Y. Kim, M. Wei, A.H. Proppe, M.I. Saidaminov, J. Xu, M. Liu, P. Li, J.Z. Fan, J.W. Jo, H. Tan, F. Tan, S. Hoogland, Z.H. Lu, S.O. Kelley, E.H. Sargent, Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nat. Commun. 9, 1–7 (2018)

    Article  CAS  Google Scholar 

  11. Y. Kim, F. Che, J.W. Jo, J. Choi, F.P. García de Arquer, O. Voznyy, B. Sun, J. Kim, M.J. Choi, R. Quintero-Bermudez, F. Fan, C.S. Tan, E. Bladt, G. Walters, A.H. Proppe, C. Zou, H. Yuan, S. Bals, J. Hofkens, M.B.J. Roeffaers, S. Hoogland, E.H. Sargent, A facet-specific quantum dot passivation strategy for colloid management and efficient infrared photovoltaics. Adv. Mater. 31, 1–8 (2019)

    Article  CAS  Google Scholar 

  12. M.J. Choi, S.W. Baek, S. Lee, M. Biondi, C. Zheng, P. Todorovic, P. Li, S. Hoogland, Z.H. Lu, F.P.G. de Arquer, E.H. Sargent, Colloidal quantum dot bulk heterojunction solids with near-unity charge extraction efficiency. Adv. Sci. 7, 1–7 (2020)

    Article  Google Scholar 

  13. S. Liu, C. Zhang, S. Li, Y. Xia, K. Wang, K. Xiong, H. Tang, L. Lian, X. Liu, M.Y. Li, M. Tan, L. Gao, G. Niu, H. Liu, H. Song, D. Zhang, J. Gao, X. Lan, K. Wang, X.W. Sun, Y. Yang, J. Tang, J. Zhang, Efficient infrared solar cells employing quantum dot solids with strong inter-dot coupling and efficient passivation. Adv. Funct. Mater. 31, 1–8 (2021)

    Google Scholar 

  14. Y. Bi, S. Pradhan, S. Gupta, M.Z. Akgul, A. Stavrinadis, G. Konstantatos, Infrared solution-processed quantum dot solar cells reaching external quantum efficiency of 80% at 1.35 µm and Jsc in excess of 34 mA cm−2. Adv. Mater. 30, 1–6 (2018)

    Article  Google Scholar 

  15. A. Andruszkiewicz, X. Zhang, M.B. Johansson, L. Yuan, E.M.J. Johansson, Perovskite and quantum dot tandem solar cells with interlayer modification for improved optical semitransparency and stability. Nanoscale 13, 6234–6240 (2021)

    Article  CAS  Google Scholar 

  16. S. Zheng, J. Chen, E.M.J. Johansson, X. Zhang, PbS colloidal quantum dot inks for infrared solar cells. iScience 23, 101753 (2020)

    Article  CAS  Google Scholar 

  17. G.I. Koleilat, L. Levina, H. Shukla, S.H. Myrskog, S. Hinds, A.G. Pattantyus-Abraham, E.H. Sargent, Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008)

    Article  CAS  Google Scholar 

  18. J.H. Song, S. Jeong, Colloidal quantum dot based solar cells: From materials to devices. Nano Converg. 4, 1–8 (2017)

    Article  CAS  Google Scholar 

  19. M.J. Speirs, D.N. Dirin, M. Abdu-Aguye, D.M. Balazs, M.V. Kovalenko, M.A. Loi, Temperature dependent behaviour of lead sulfide quantum dot solar cells and films. Energy Environ. Sci. 9, 2916–2924 (2016)

    Article  CAS  Google Scholar 

  20. E.H. Sargent, Colloidal quantum dot solar cells. Nat. Photonics 6, 133–135 (2012)

    Article  CAS  Google Scholar 

  21. J.Z. Fan, M. Vafaie, K. Bertens, M. Sytnyk, J.M. Pina, L.K. Sagar, O. Ouellette, A.H. Proppe, A.S. Rasouli, Y. Gao, S.W. Baek, B. Chen, F. Laquai, S. Hoogland, F.P.G. De Arquer, W. Heiss, E.H. Sargent, Micron thick colloidal quantum dot solids. Nano Lett. 20, 5284–5291 (2020)

    Article  CAS  Google Scholar 

  22. N. Sukharevska, D. Bederak, V.M. Goossens, J. Momand, H. Duim, D.N. Dirin, M.V. Kovalenko, B.J. Kooi, M.A. Loi, Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Appl. Mater. Interfaces 13, 5195–5207 (2021)

    Article  CAS  Google Scholar 

  23. H. Choi, J.G. Lee, X.D. Mai, M.C. Beard, S.S. Yoon, S. Jeong, Supersonically spray-coated colloidal quantum dot ink solar cells. Sci. Rep. 7, 1–8 (2017)

    CAS  Google Scholar 

  24. K. Song, J. Yuan, T. Shen, J. Du, J. Tian, R. Guo, T. Pullerits, Spray coated colloidal quantum dot films for broadband photodetectors. Nanomaterials 9, 1–11 (2019)

    Article  Google Scholar 

  25. X. Zhang, V.A. Öberg, J. Du, J. Liu, E.M.J. Johansson, Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11, 354–364 (2018)

    Article  CAS  Google Scholar 

  26. B.K. Jung, S. Jeon, H.K. Woo, T. Park, J. Ahn, J. Bang, S.Y. Lee, Y.M. Lee, S.J. Oh, Janus-like jagged structure with nanocrystals for self-sorting wearable tactile sensor. ACS Appl. Mater. Interfaces 13, 6394–6403 (2021)

    Article  CAS  Google Scholar 

  27. D. Kufer et al., Hybrid 2D-0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176–180 (2015)

    Article  CAS  Google Scholar 

  28. I. Nikitskiy et al., Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 7, 1–8 (2016)

    Article  CAS  Google Scholar 

  29. D.K. Hwang, Y.T. Lee, H.S. Lee, Y.J. Lee, S.H. Shokouh, J.H. Kyhm, J. Lee, H.H. Kim, T.H. Yoo, S.H. Nam, D.I. Son, B.K. Ju, M.C. Park, J.D. Song, W.K. Choi, S. Im, Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater. 8, e233 (2016)

    Article  CAS  Google Scholar 

  30. K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, J. Tang, Spectra-selective PbS quantum dot infrared photodetectors. Nanoscale 8, 7137–7143 (2016)

    Article  CAS  Google Scholar 

  31. A. De Iacovo, C. Venettacci, L. Colace, L. Scopa, S. Foglia, PbS colloidal quantum dot photodetectors operating in the near infrared. Sci. Rep. 6, 1–9 (2016)

    Article  CAS  Google Scholar 

  32. Y. Wang, Z. Liu, N. Huo, F. Li, M. Gu, X. Ling, Y. Zhang, K. Lu, L. Han, H. Fang, A.G. Shulga, Y. Xue, S. Zhou, F. Yang, X. Tang, J. Zheng, M.A. Loi, G. Konstantatos, W. Ma, Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 10, 1–8 (2019)

    CAS  Google Scholar 

  33. I. Ramiro, O. Özdemir, S. Christodoulou, S. Gupta, M. Dalmases, I. Torre, G. Konstantatos, Mid- and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots. Nano Lett. 20, 1003–1008 (2020)

    Article  CAS  Google Scholar 

  34. H. Choi, J.H. Ko, Y.H. Kim, S. Jeong, Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability. J. Am. Chem. Soc. 135, 5278–5281 (2013)

    Article  CAS  Google Scholar 

  35. M. Biondi, M.J. Choi, S. Lee, K. Bertens, M. Wei, A.R. Kirmani, G. Lee, H.T. Kung, L.J. Richter, S. Hoogland, Z.H. Lu, F.P. García De Arquer, E.H. Sargent, Control over ligand exchange reactivity in hole transport layer enables high-efficiency colloidal quantum dot solar cells. ACS Energy Lett. 6, 468–476 (2021)

    Article  CAS  Google Scholar 

  36. Y. Cho, B. Hou, J. Lim, S. Lee, S. Pak, J. Hong, P. Giraud, A.R. Jang, Y.W. Lee, J. Lee, J.E. Jang, H.J. Snaith, S.M. Morris, J.I. Sohn, S. Cha, J.M. Kim, Balancing charge carrier transport in a quantum dot P–N junction toward hysteresis-free high-performance solar cells. ACS Energy Lett. 3, 1036–1043 (2018)

    Article  CAS  Google Scholar 

  37. H.K. Woo, M.S. Kang, T. Park, J. Bang, S. Jeon, W.S. Lee, J. Ahn, G. Cho, D.K. Ko, Y. Kim, D.H. Ha, S.J. Oh, Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells. Nanoscale 11, 17498–17505 (2019)

    Article  CAS  Google Scholar 

  38. X. Zhang, E.M.J. Johansson, Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. J. Mater. Chem. A 5, 303–310 (2017)

    Article  CAS  Google Scholar 

  39. S.W. Baek, O. Ouellette, J.W. Jo, J. Choi, K.W. Seo, J. Kim, B. Sun, S.H. Lee, M.J. Choi, D.H. Nam, L.N. Quan, J. Kang, S. Hoogland, F.P. García De Arquer, J.Y. Lee, E.H. Sargent, Infrared cavity-enhanced colloidal quantum dot photovoltaics employing asymmetric multilayer electrodes. ACS Energy Lett. 3, 2908–2913 (2018)

    Article  CAS  Google Scholar 

  40. M.J. Choi, F.P. García de Arquer, A.H. Proppe, A. Seifitokaldani, J. Choi, J. Kim, S.W. Baek, M. Liu, B. Sun, M. Biondi, B. Scheffel, G. Walters, D.H. Nam, J.W. Jo, O. Ouellette, O. Voznyy, S. Hoogland, S.O. Kelley, Y.S. Jung, E.H. Sargent, Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 11, 1–9 (2020)

    Article  CAS  Google Scholar 

  41. S.J. Oh, D.B. Straus, T. Zhao, J.H. Choi, S.W. Lee, E.A. Gaulding, C.B. Murray, C.R. Kagan, Engineering the surface chemistry of lead chalcogenide nanocrystal solids to enhance carrier mobility and lifetime in optoelectronic devices. Chem. Commun. 53, 728–731 (2017)

    Article  CAS  Google Scholar 

  42. W.S. Lee, Y.G. Kang, H.K. Woo, J. Ahn, H. Kim, D. Kim, S. Jeon, M.J. Han, J.H. Choi, S.J. Oh, Designing high-performance CdSe nanocrystal thin-film transistors based on solution process of simultaneous ligand exchange, trap passivation, and doping. Chem. Mater. 31, 9389–9399 (2019)

    Article  CAS  Google Scholar 

  43. P.H. Rekemeyer, C.H.M. Chuang, M.G. Bawendi, S. Gradečak, Minority carrier transport in lead sulfide quantum dot photovoltaics. Nano Lett. 17, 6221–6227 (2017)

    Article  CAS  Google Scholar 

  44. M. Yuan, M. Liu, E.H. Sargent, Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1, 1–9 (2016)

    Article  Google Scholar 

  45. F. Yang, Y. Xu, M. Gu, S. Zhou, Y. Wang, K. Lu, Z. Liu, X. Ling, Z. Zhu, J. Chen, Z. Wu, Y. Zhang, Y. Xue, F. Li, J. Yuan, W. Ma, Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells. J. Mater. Chem. A 6, 17688–17697 (2018)

    Article  CAS  Google Scholar 

  46. R. Azmi, S. Sinaga, H. Aqoma, G. Seo, T.K. Ahn, M. Park, S.Y. Ju, J.W. Lee, T.W. Kim, S.H. Oh, S.Y. Jang, Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation. Nano Energy 39, 86–94 (2017)

    Article  CAS  Google Scholar 

  47. M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017)

    Article  Google Scholar 

  48. K. Qiao, Y. Cao, X. Yang, J. Khan, H. Deng, J. Zhang, U. Farooq, S. Yuan, H. Song, Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI2 incorporation. RSC Adv. 7, 52947–52954 (2017)

    Article  CAS  Google Scholar 

  49. H. Beygi, S.A. Sajjadi, A. Babakhani, J.F. Young, F.C.J.M. van Veggel, Surface chemistry of as-synthesized and air-oxidized PbS quantum dots. Appl. Surf. Sci. 457, 1–10 (2018)

    Article  CAS  Google Scholar 

  50. Y. Xia, S. Liu, K. Wang, X. Yang, L. Lian, Z. Zhang, J. He, G. Liang, S. Wang, M. Tan, H. Song, D. Zhang, J. Gao, J. Tang, M.C. Beard, J. Zhang, Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30, 1–11 (2020)

    Article  Google Scholar 

  51. X. Zhang, Y. Chen, L. Lian, Z. Zhang, Y. Liu, L. Song, C. Geng, J. Zhang, S. Xu, Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 14, 628–634 (2021)

    Article  CAS  Google Scholar 

  52. Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, E. Yassitepe, A. Buin, S. Hoogland, E.H. Sargent, Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015)

    Article  CAS  Google Scholar 

  53. B. Sun, A. Johnston, C. Xu, M. Wei, Z. Huang, Z. Jiang, H. Zhou, Y. Gao, Y. Dong, O. Ouellette, X. Zheng, J. Liu, M.J. Choi, Y. Gao, S.W. Baek, F. Laquai, O.M. Bakr, D. Ban, O. Voznyy, F.P. García de Arquer, E.H. Sargent, Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 4, 1542–1556 (2020)

    Article  CAS  Google Scholar 

  54. G.K. Grandhi, H.J. Kim, N.S.M. Viswanath, H.B. Cho, J.H. Han, S.M. Kim, W.B. Im, Strategies for improving luminescence efficiencies of blue-emitting metal halide perovskites. J. Korean Ceram. Soc. 58, 28–41 (2020)

    Article  CAS  Google Scholar 

  55. D.E. Lee, S.Y. Kim, H.W. Jang, Lead-free all-inorganic halide perovskite quantum dots: review and outlook. J. Korean Ceram. Soc. 57, 455–479 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Korea Electric Power Corporation (KEPCO) (R21XA01-21) and the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2018M3D1A1059001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soong Ju Oh.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, B.K., Kim, W. & Oh, S.J. Stable colloidal quantum dot-based infrared photodiode: multiple passivation strategy. J. Korean Ceram. Soc. 58, 521–529 (2021). https://doi.org/10.1007/s43207-021-00134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00134-4

Keywords

Navigation