Skip to main content

Influence of temperature on performance of CuV2O6 cathode for high voltage thermal battery


The influence of heat treatment on the material properties and electrochemical properties of CuV2O6, as a candidate cathode for thermal batteries, was evaluated, where the discharge capacity and open-circuit voltage were measured. The properties of CuV2O6 calcined at different temperatures were determined using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM) and energy dispersive spectroscopy. CuV2O6 was synthesized from NH4VO3 and CuCl2 via the hydrothermal method, and the XRD pattern was consistent with PDF#01-074-2117. The synthesized CuV2O6 was calcined at different temperatures, and the influence of calcination on the structures was analyzed by SEM and TEM. The SEM and TEM images showed that CuV2O6 was formed as rod-shaped crystals that gradually grew with increasing calcination temperature. However, upon calcination at 600 °C, the morphology of CuV2O6 was not maintained and the compound decomposed irregularly. XPS analysis showed that CuV2O6 is changed to Cu2V2O7 at higher calcination temperatures. Less than 5% weight change was observed in the TGA curves, including an increase in the weight at a higher temperature. The capacity of the CuV2O6 samples was approximately 300‒350 mAh/g as determined from the discharge curve, and CuV2O6 calcined at 550 °C had a higher activation energy than the other samples. Calcination at higher temperature could afford enhanced battery capacity. The data indicate that CuV2O6 may be a viable candidate material for thermal battery cathodes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    P.J. Masset, R.A. Guidotti, Thermal activated (‘thermal’) battery technology. Part IIIa: FeS2 cathode material. J. Power Sour. 177(2), 595 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    I.Y. Kim, S.P. Woo, J. Ko, S.H. Kang, Y.S. Yoon, H.W. Cheong, J.H. Lim, Binder-free cathode for thermal batteries fabricated using FeS2 treated metal foam. Front. Chem. 7(1), 1 (2020)

    Article  Google Scholar 

  3. 3.

    P.J. Masset, R.A. Guidotti, Thermal activated (‘thermal’) battery technology. Part IIIb. Sulfur and oxide-based cathode materials. J. Power Sour. 178(1), 456 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    J. Ko, S.H. Kang, H.W. Cheong, Y.S. Yoon, Recent progress in cathode materials for thermal batteries. J. Korean Ceram. Soc. 56(3), 233 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    M. Eguchi, T. Iwamoto, T. Miura, T. Kishi, Lithiation characteristics of α-CuV2O6 and other nCuO V2O5. Solid state Ionics, 89(1-2), 109-116 (1996).

  6. 6.

    Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials. J. Nanomater. vol.2020, Aricle ID 8917013, 3pages, 2020.

    Article  Google Scholar 

  7. 7.

    O. Yamamoto, Y. Takeda, I. Itoh, R. Kanno, T. Icikawa, N. Imanishi, Characteristics of Brannerite-type CuV2-xMoxO6 (0 < x < 1) cathodes for lithium cells. J. Electrochem. Soc 138(9), 2566 (1991)

    Article  Google Scholar 

  8. 8.

    L. Sanz, J. Palma, E. García-Quismondo, M. Anderson, The effect of chloride ion complexation on reversibility and redox potential of the Cu(II)/Cu(I) couple for use in redox flow batteries. J. Power Sour. 224, 278 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    T. Hillel, Y. Ein-Eli, Copper vanadate as promising high voltage cathodes for Li thermal batteries. J. Power Sour. 229, 112 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    J. Ko, I.Y. Kim, H.M. Jung, H. Cheong, Y.S. Yoon, Thin cathode for thermal batteries using a tape-casting process. Ceram. Int. 43(7), 5789 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 130(15), 5361 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    J. Ko, I.Y. Kim, H. Cheong, Y.S. Yoon, Organic binder-free cathode using FeS2-MWCNTs composite for thermal batteries. J. Am. Ceram. Soc. 100(10), 4435 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    Z. Zicheng et al., Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-ion battery anodes. Small 11(37), 4922–4930 (2015)

    Article  Google Scholar 

  14. 14.

    I. Khan, A. Qurashi, Shape controlled synthesis of copper vanadate platelet nanostructures, their optical band edges, and solar-driven water splitting properties. Sci. Rep. 7(1), 1 (2017)

    Article  Google Scholar 

  15. 15.

    Y.L. Cha, I.H. Park, K.H. Moon, D.H. Kim, S.I. Jung, Y.S. Yoon, Simultaneous control of phase transformation and crystal of amorphous TiO2 coating on MWCNT surface. J. Korean Ceram. Soc. 55(6), 618 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    S. Sasikala, G. Venkatachalam, S.J. Kwon, Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8(10), 823 (2018)

    Article  Google Scholar 

  17. 17.

    R.M. Purnachander et al., Synthesis, characterization and adsorption properties of Cu2V2O7 nanoparticles. Solid State Sci. 92, 13–23 (2019)

    Article  Google Scholar 

  18. 18.

    E.J. Baran, C.I. Cabello, A.G. Nord, Raman spectra of some MIIV2O6 brannerite-type metavanadates. J. Raman Spectrosc. 18(6), 405–407 (1987)

    CAS  Article  Google Scholar 

  19. 19.

    T.M. Ivanova, K.I. Maslakov, A.A. Sidorov, M.A. Kiskin, R.V. Linko, S.V. Savilov, V.V. Lunin, I.L. Eremenko, XPS detection of unusual Cu(II) to Cu(I) transition on the surface of complexes with redox-active ligands. J. Electron Spectrosc. Relat. Phenom 238, 46878 (2020)

    Article  Google Scholar 

  20. 20.

    G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenomena 135(2–3), 167 (2004)

    CAS  Article  Google Scholar 

  21. 21.

    S.A. Shokry, A.K. El Morsi, M.S. Sabaa, R.R. Mohamed, H.E. El Sorogy, Study of the productivity of MWCNT over Fe and Fe–Co catalysts supported on SiO2, Al2O3 and MgO. Egypt. J. Pet. 23(2), 183 (2014)

    Article  Google Scholar 

  22. 22.

    Z. Haobing et al., Influence of working temperature on the electrochemical characteristics of Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for Li-ion batteries. J. Alloys Compd. 847, 156412 (2020)

    Article  Google Scholar 

  23. 23.

    B. Evgenij, J.R. Macdonald (eds.), Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2018)

    Google Scholar 

  24. 24.

    S.R. Chinnadayyala, J. Park, Y. Choi, J.H. Han, A.K. Yagati, S. Cho, Electrochemical impedance characterization of cell growth on reduced graphene oxide–gold nanoparticles electrodeposited on indium tin oxide electrodes. Appl. Sci. 9(2), 326 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    S.L. Chou, J.Z. Wang, J.Z. Sun, D. Wexler, M. Forsyth, H.K. Liu, D.R. MacFarlane, S.X. Dou, High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 20(22), 7044-7051 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    B. Qiu, J. Wang, Y. Xia, Z. Wei, S. Han, Z. Liu, Temperature dependence of the initial coulombic efficiency in Li-rich layered Li[Li0.144Ni0.136Co0.136Mn 0.544]O2 oxide for lithium-ions batteries. J. Power Sour. 268, 517 (2014)

    CAS  Article  Google Scholar 

Download references


This research was supported by the ‘Agency for Defense Development’ (Grant no. UD190006GD) as a Collaborative Core Technology research project.

Author information



Corresponding authors

Correspondence to Hae-Won Cheong or Young Soo Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roh, H.C., Kim, I.Y., Ahn, T.Y. et al. Influence of temperature on performance of CuV2O6 cathode for high voltage thermal battery. J. Korean Ceram. Soc. 58, 507–518 (2021).

Download citation


  • Thermal battery
  • CuV2O6
  • Cathode material
  • High voltage
  • Activation energy