Skip to main content

Effect of the processing conditions of reticulated porous alumina on the compressive strength

Abstract

Reticulated porous ceramics feature a three-dimensional network structure with high porosity and permeability simultaneously. However, generally, the compressive strength capabilities of reticulated porous ceramics are low, which severely limits applications of these materials. To increase the compressive strength of reticulated porous ceramics, it is necessary to coat the strut walls of the polyurethane foam completely with alumina slurry to form a thin ceramic coating layer after optimizing the processing conditions, specifically the alumina slurry composition and the coating condition. Although it remains challenging to improve the compressive strength of reticulated porous ceramics, thus far efforts to do so are underreported. Therefore, in this study, we attempt to optimize the composition (thickener, dispersant, and binder) of the alumina slurry. Among various types of reticulated porous ceramics, we focus on reticulated porous alumina here. Although there are numerous studies regarding porous alumina, which is already widely used, investigations of reticulated porous alumina are rare. In this study, we determined the optimized processing conditions to improve the compressive strength of reticulated porous alumina. These conditions, specifically the composition of the alumina slurry and the pore density of the polyurethane foam, are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J.-H. Ha, S. Lee, B. Park, J. Lee, I.-H. Song, Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications. J. Aust. Ceram. Soc. 56, 1481–1491 (2020)

    Article  Google Scholar 

  2. 2.

    X. Liang, Y. Li, W. Yan, Q. Wang, F. Tan, Z. He, S. Sang, Preparation of SiC reticulated porous ceramics with high strength and increased efficient filtration via fly ash addition. J. Eur. Ceram. Soc. 41, 2290–2296 (2021)

    CAS  Article  Google Scholar 

  3. 3.

    C. Sinn, J. Wentrup, G.R. Pesch, J. Thöming, L. Kiewidt, Structure-heat transport analysis of periodic open-cell foams to be used as catalyst carriers. Chem. Eng. Res. Des. 166, 209–219 (2021)

    CAS  Article  Google Scholar 

  4. 4.

    M. Innocentini, V.R. Salvini, J.R. Coury, V.C. Pandolfelli, Permeability of ceramic foams. Bull. Am. Ceram. Soc. 78(9), 78–84 (1999)

    CAS  Google Scholar 

  5. 5.

    D.J. Green, P. Colombo, The structure and applications of cellular ceramics. MRS Bull. 28, 296–300 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    X. Pu, X. Liu, F. Qiu, L. Huang, Novel method to optimize the structure of reticulated porous ceramics. J. Am. Ceram. Soc. 87(7), 1392–1394 (2004)

    CAS  Article  Google Scholar 

  7. 7.

    Z. Deng, J. Yang, Y. Beppu, M. Ando, T. Ohji, Effect of agglomeration on mechanical properties of porous zirconia fabricated by partial sintering. J. Am. Ceram. Soc. 85(8), 1961–1965 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    H. Wang, X. Li, J. Yu, D. Kim, Fabrication and characterization of ordered macroporous PMS-derived SiC from a sacrificial template method. J. Mater. Chem. 14(9), 1383–1386 (2004)

    CAS  Article  Google Scholar 

  9. 9.

    J. Ha, E. Oh, I. Song, The effect of sacrificial templates on the pore characteristics of sintered diatomite membranes. J. Ceram. Soc. Jpn. 121(1419), 940–945 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    S. Barg, C. Soltmann, M. Andrade, D. Koch, G. Grathwohl, Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J. Am. Ceram. Soc. 91(9), 2823–2829 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    J. Yu, J. Yang, H. Li, X. Xi, Y. Huang, Study on particle-stabilized Si3N4 ceramic foams. Mater. Lett. 65(12), 1801–1804 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    Y.M. Byun, G.W. Lee, K.S. Lee, J.G. Park, I.J. Kim, Mechanical properties of carbon fiber-reinforced Al 2 O 3 porous ceramics. J. Korean. Ceram. Soc. 58, 1–7 (2021)

    Article  Google Scholar 

  13. 13.

    X.-D. Wang, H.-Y. Xu, F.-J. Zhang, D.-C. Li, A.-G. Wang, D.-S. Sun, W.-C. Oh, Preparation of porous cordierite ceramic with acid-leached coal gangue. J. Korean Ceram. Soc. 57, 1–7 (2020)

    Article  Google Scholar 

  14. 14.

    S. Chae, Y. Kim, I. Song, H. Kim, M. Narisawa, Porosity control of porous silicon carbide ceramics. J. Eur. Ceram. Soc. 29(13), 2867–2872 (2009)

    CAS  Article  Google Scholar 

  15. 15.

    S. Lee, J.-H. Ha, J. Lee, I.-H. Song, Enhanced mechanical strength of talc-containing porous kaolin prepared by a replica method. J. Korean. Ceram. Soc. 58, 123–133 (2021)

    Article  Google Scholar 

  16. 16.

    S. Lee, C.Y. Lee, J.-H. Ha, J. Lee, I.-H. Song, S.-H. Kwon, Enhancing compressive strength of reticulated porous alumina by optimizing processing conditions. Appl. Sci. 11, 4517 (2021)

    Article  Google Scholar 

  17. 17.

    A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89(6), 1771–1789 (2006)

    CAS  Article  Google Scholar 

  18. 18.

    S. Ahmad, M.A. Latif, H. Taib, A. Ismail, Short review: Ceramic foam fabrication techniques for wastewater treatment application. Adv. Mat. Res. 795, 5–8 (2013)

    Google Scholar 

  19. 19.

    P. Sepulveda, Gelcasting foams for porous ceramics. Bull. Am. Ceram. Soc. 76(10), 61–65 (1997)

    CAS  Google Scholar 

  20. 20.

    I. Fukuura, T. Asano, Fabrication and Properties of Some Oxide Ceramics: Alumina, Mullite, and Zirconia (Elsevier Science Publishing Co., Inc., Amsterdam, 1998), pp. 165–174

    Google Scholar 

  21. 21.

    F.F. Lange, K.T. Miller, Open-cell, low-density ceramics fabricated from reticulated polymer substrates. J. Adv. Ceram. 2(4), 827–831 (1987)

    CAS  Article  Google Scholar 

  22. 22.

    R. Brezny, D.J. Green, Fracture behavior of open-cell ceramics. J. Am. Ceram. Soc. 72(7), 1145–1152 (1989)

    CAS  Article  Google Scholar 

  23. 23.

    A. Banerjee, R.B. Chandran, J. Davidson, H, Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery. Appl. Therm. Eng. 75, 889–895 (2015)

    CAS  Article  Google Scholar 

  24. 24.

    J. Ha, S. Lee, J.R. Choi, J. Lee, I. Song, T. Chung, A cobalt-coated reticulated porous alumina for radar-absorption applications. J. Aust. Ceram. Soc. 55(3), 883–891 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    S. Lee, J. Ha, J. Lee, I. Song, S. Kwon, Preparation and characterization of a low-cost and natural material-based reticulated porous diatomite-kaolin composite. Appl. Sci. 10(6), 2125 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    Y.J. Lee, S.R. Kim, Y.H. Kim, D.G. Shin, J.Y. Won, W.T. Kwon, Characterization of microstructure on porous silicon carbide prepared by polymer replica template method. J. Korean Ceram. Soc. 51(6), 539 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    X. Zhu, D. Jiang, S. Tan, Z. Zhang, Improvement in the strut thickness of reticulated porous ceramics. J. Am. Ceram. Soc. 84(7), 1654–1656 (2001)

    CAS  Article  Google Scholar 

  28. 28.

    N.A. Dulina, T.G. Deineka, R.P. Yavetskiy, Z.P. Sergienko, A.G. Doroshenko, P.V. Mateychenko, N.A. Matveevskaya, Comparison of dispersants performance on the suspension Lu2O3: Eu3 stability and high-density compacts on their basis. Ceram. Int. 37(5), 1645–1651 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Cho, I. Park, J. Moon, D. Kim, Dispersion and rheological characteristics of alumina slurries in aqueous tape-casting using acrylate binder. J. Korean Ceram. Soc. 39(2), 164–170 (2002)

    Article  Google Scholar 

  30. 30.

    S. Yu, C. Lee, Y. Hahm, Densification and mechanical property of α-Al2O3/Al2O3-platelet composite manufactured by slip casting. J. Ind. Eng. Chem. 11(4), 387–395 (2000)

    CAS  Google Scholar 

  31. 31.

    H. Sarraf, Z. Qian, L. Škarpová, B. Wang, R. Herbig, M. Maryška, B. Anvari, Direct probing of dispersion quality of ZrO2 nanoparticles coated by polyelectrolyte at different concentrated suspensions. Nanoscale Res. Lett. 10(1), 1–14 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    M. Park, H. Kim, H.M. Lim, J. Choi, D.S. Kim, Correlation research of dispersant factors on the silica sol prepared from fumed silica. Korean J. Mater. Res. 26(3), 136–142 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    J. Ha, E. Oh, I. Song, The effect of processing conditions on the gradient pore structure of diatomite by centrifugal molding. J. Korean Powder Metall. Inst. 19(4), 304–309 (2012)

    Article  Google Scholar 

  34. 34.

    Y.S. Kim, H. Kang, Effect of cellulose based water retention additives on mechanical properties of cement based mortar. Polym. Korea 39(5), 820–826 (2015)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported financially by Fundamental Research Program of the Korean Institute of Materials Science (KIMS), Grant No. PNK7420, and by the Technology Innovation Program (20003782) of the Ministry of Trade, Industry and Energy.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jang-Hoon Ha or Kyoung-Seok Moon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, CY., Lee, S., Ha, JH. et al. Effect of the processing conditions of reticulated porous alumina on the compressive strength. J. Korean Ceram. Soc. 58, 495–506 (2021). https://doi.org/10.1007/s43207-021-00128-2

Download citation

Keywords

  • Reticulated porous alumina
  • Compressive strength
  • Optimized viscosity