Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs

Abstract

Lithium ions-doped NaV6O15 thin films have been prepared using a simple low temperature liquid phase deposition method and subsequent annealing process. X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), and photoelectron spectroscopy (XPS) have been used to study the structural and physicochemical characteristics of the NaV6O15 film. The films were grown on the FTO conductive glass and used directly as an electrode of sodium ion batteries. The prepared lithium ions-doped NaV6O15 thin film electrodes showed an excellent cycling stability and discharge capacity, which may be attributed to the stability of the Li+ embedded into the gap between the V–O layers to maintain the structure and its stable β-phase structure transformed after the first cycle. The cycling stability greatly improved with increasing annealing temperature, while the discharge capacity decreased. The capacities of the film electrodes annealed at 400 °C and 450 °C maintained above 97% after 100 cycles. The lithium-doped NaV6O15 underwent a phase transition during the first charge/discharge cycle. The new transformed phase has perfect crystal structure stability undergoing insertion and deinsertion of Na+. Therefore, the lithium-doped NaV6O15 thin film possesses good cycling stability and is expected to be a promising thin film cathode for sodium-ion batteries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    S. Liang, J. Zhou, G. Fang, C. Zhang, J. Wu, Y. Tang, A. Pan, Synthesis of mesoporous β-Na0.33V2O5 with enhanced electrochemical performance for lithium ion batteries. Electrochim. Acta. 130, 119–126 (2014)

    CAS  Article  Google Scholar 

  2. 2.

    H. Wu, Y. Zhang, X. Zhang, K. San-Hui, J. Zhu, W. He, Low cost Na2FeSiO4/H–N-doped hard carbon nanosphere hybrid cathodes for high energy and power sodium-ion supercapacitors. J. Alloy. Compd. 842, 155797–155828 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    X. Wang, Q. Liu, H. Wang, D. Jiang, Y. Chang, T. Zhang, B. Zhang, H. Mou, Y. Jiang, PVP-modulated synthesis of NaV6O15 nanorods as cathode materials for high-capacity sodium-ion batteries. J. Mater. Sci. 51, 8986–8994 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    H. Wu, M. Qin, X. Li, Z. Cao, B. Jia, Z. Zhang, D. Zhang, X. Qu, A.A. Volinsky, One step synthesis of vanadium pentoxide sheets as cathodes for lithium ion batteries. Electrochim. Acta. 206, 301–306 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    S. Cao, S. Song, X. Xiang, Q. Hu, C. Zhang, Z. Xia, Y. Xu, W. Zha, J. Li, P.M. Gonzale, Y.H. Han, F. Chen, Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: a review. J. Korean Ceram. Soc. 56(2), 111–129 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    R. Arunadevi, B. Kavitha, M. Rajarajan, A. Suganthi, Synthesis of Ce/Mo-V4O9 nanoparticles with superior visible light photocatalytic activity for Rhodamine-B degradation. J. Environ. Chem. Eng. 6, 3349–3357 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    M. Zhao, W. Zhang, X. Song, Lithium-ion storage properties of a micro/nanosheet-like NaV6O15 anode in aqueous solution. Dalton Trans. 46, 3857–3863 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    M. Zhao, W. Zhang, F. Qu, F. Wang, X. Song, Good discharge capacities of NaV6O15 material for an aqueous rechargeable lithium battery. Electrochim. Acta. 138, 187–192 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    F. Hu, W. Jiang, Y. Dong, X. Lai, L. Xiao, X. Wu, Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries. RSC Adv. 7, 29481–29488 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    M.D. Soriano, E. Rodríguez-Castellón, E. García-González, J.M. López-Nieto, Catalytic behavior of NaV6O15 bronze for partial oxidation of hydrogen sulfide. Catal. Today. 238, 62–68 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    D. Wu, J. Zeng, H. Hua, J. Wu, Y. Yang, J. Zhao, NaV6O15: a promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance. Nano Res. 13, 335–343 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    Y. Dong, J. Xu, M. Chen, Y. Guo, G. Zhou, N. Li, S. Zhou, C.-P. Wong, Self-assembled NaV6O15 flower-like microstructures for high-capacity and long-life sodium-ion battery cathode. Nano Energy 68, 104357–104374 (2020)

    CAS  Article  Google Scholar 

  13. 13.

    S. Li, Y. Zhang, Y. Tang, X. Tan, S. Liang, J. Zhou, Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries. J. Electroanal. Chem. 853, 113505–113511 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    E.A. Esparcia, M.S. Chae, J.D. Ocon, S.-T. Hong, Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium–ion batteries. Chem. Mat. 30, 3690–3696 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    Y. Lee, B.U. Ye, D.K. Lee, J.M. Baik, H.K. Yu, M.H. Kim, The migration of alkali metal (Na+, Li+, and K+) ions in single crystalline vanadate nanowires: Rasch–Hinrichsen resistivity. Curr. Appl. Phys. 19, 516–520 (2019)

    Article  Google Scholar 

  16. 16.

    J. Chen, H.-Y. Xu, J.-H. Ruan, Y.-M. Xin, Y. Li, D.-C. Li, A.-G. Wang, D.-S. Sun, Preparation and electrochemical performance of binder-free sodium vanadium bronze thin film electrodes based on a low temperature liquid phase deposition method. Mater. Chem. Phys. 249, 122935–122945 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    S.H. Gong, J. Lee, H.S. Kim, Development of electrode architecture using Sb–rGO composite and CMC binder for high-performance sodium-ion battery anodes. J. Korean Ceram. Soc. 57(1), 91–97 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    N.U.R. Lashari, M. Zhao, Q. Zheng, H. Gong, X. Song, Good lithium-ion insertion/extraction characteristics of a novel double metal doped hexa-vanadate compounds used in an inorganic aqueous solution. Energy Fuels. 32, 10016–10023 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    I. Seo, G.C. Hwang, J.-K. Kim, Y. Kim, Electrochemical characterization of micro-rod β-Na0.33V2O5 for high performance lithium ion batteries. Electrochim. Acta. 193, 160–165 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    M. Najdoski, V. Koleva, S. Demiri, Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes. Mater. Res. Bull. 47, 737–743 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    M.-L. Qin, W.-M. Liu, Y.-J. Xiang, W.-G. Wang, B. Shen, Synthesis and electrochemical performance of V2O5/NaV6O15 nanocomposites as cathode materials for sodium-ion batteries. Trans. Nonferr. Met. Soc. China. 30, 2200–2206 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    S. Osman, S. Zuo, X. Xu, J. Shen, Z. Liu, F. Li, P. Li, X. Wang, J. Liu, Freestanding sodium vanadate/carbon nanotube composite cathodes with excellent structural stability and high rate capability for sodium-ion batteries. ACS Appl. Mater. Interfaces. 13, 816–826 (2021)

    CAS  Article  Google Scholar 

  23. 23.

    D. McNulty, D. Noel-Buckley, C. O’Dwyer, NaV2O5 from sodium ion-exchanged vanadium oxide nanotubes and its efficient reversible lithiation as a Li-ion anode material. ACS Appl. Energy Mater. 2, 822–832 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    J. Bard, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001), p. 159

    Google Scholar 

  25. 25.

    Y. Lu, J. Wu, J. Liu, M. Lei, S. Tang, P. Lu, L. Yang, H. Yang, Q. Yang, Facile synthesis of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries. ACS Appl. Mater. Interfaces. 7, 17433–17441 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    X. Song, J. Li, Z. Li, Q. Xiao, G. Lei, Z. Hu, Y. Ding, H.M. Kheimeh Sari, X. Li, Superior sodium storage of carbon-coated NaV6O15 nanotube cathode: pseudocapacitance versus intercalation. ACS Appl. Mater. Interfaces. 11, 10631–10641 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    Y. Zhu, Y. Xu, Y. Liu, C. Luo, C. Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5, 780–788 (2013)

    CAS  Article  Google Scholar 

  28. 28.

    L. Deng, X. Niu, G. Ma, Z. Yang, L. Zeng, Y. Zhu, L. Guo, Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 28, 1800670–1800678 (2018)

    Article  Google Scholar 

  29. 29.

    M. Najdoski, V. Koleva, S. Stojkovikj, T. Todorovski, Electrochromic thin films of sodium intercalated vanadium(V) oxide xerogels: chemical bath deposition and characterization. Surf. Coat. Technol. 277, 308–317 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    C.K. Christensen, D.R. Sørensen, J. Hvam, D.B. Ravnsbæk, Structural evolution of disordered LixV2O5 bronzes in V2O5 cathodes for li-ion batteries. Chem. Mat. 31, 512–520 (2018)

    Article  Google Scholar 

  31. 31.

    Q. Tan, Q. Zhu, A. Pan, Y. Wang, Y. Tang, X. Tan, S. Liang, G. Cao, Template-free synthesis of β-Na0.33V2O5 microspheres as cathode materials for lithium-ion batteries. CrystEngComm 17, 4774–4780 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    R. Li, C. Guan, X. Bian, X. Yu, F. Hu, NaV6O15 microflowers as a stable cathode material for high-performance aqueous zinc-ion batteries. RSC Adv. 10, 6807–6813 (2020)

    Article  Google Scholar 

  33. 33.

    H. Liu, Y. Wang, L. Li, K. Wang, E. Hosono, H. Zhou, Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J. Mater. Chem. 19, 7885–7892 (2009)

    CAS  Article  Google Scholar 

  34. 34.

    V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro, J. Jo, S. Kim, V. Mathew, Y.K. Sun, J. Kim, Na2V6O16.3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18, 2402–2410 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    H.T.T. Nguyen, D. Jung, C.-Y. Park, D.J. Kang, Synthesis of single-crystalline sodium vanadate nanowires based on chemical solution deposition method. Mater. Chem. Phys. 165, 19–24 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Yang, D. Kim, P. Schmuki, Electrochromic properties of anodically grown mixed V2O5–TiO2 nanotubes. Electrochem. Commun. 13, 1021–1025 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    E.A. Skryleva, I.V. Kubasov, P.V. Kiryukhantsev-Korneev, B.R. Senatulin, R.N. Zhukov, K.V. Zakutailov, M.D. Malinkovich, Y.N. Parkhomenko, XPS study of Li/Nb ratio in LiNbO3 crystals. Effect of polarity and mechanical processing on LiNbO3 surface chemical composition. Appl. Surf. Sci. 389, 387–394 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial supports from Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyqZD2016150), National Science and Technology Major Project (2019YFE03070001), and the Key Research and Development Projects of Anhui Province (202004b11020033) are acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hai Yan Xu or Won-Chun Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H.Y., Ruan, J.H., Liu, F.L. et al. Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs. J. Korean Ceram. Soc. (2021). https://doi.org/10.1007/s43207-021-00127-3

Download citation

Keywords

  • Lithium-doped NaV6O15
  • Liquid phase deposition
  • Film electrodes
  • Cycling stability
  • Phase transition