MgAl2O4-reinforced c-ZrO2 ceramics prepared by spark plasma sintering


c-zirconia ceramic composites have been synthesized by spark plasma sintering (SPS) technique from commercial m-ZrO2, Y2O3 and waste-derived magnesium aluminate spinel (MA) powders. In this study, effect of MA addition on stabilization and reinforcement of 5 mol% yttria-stabilized zirconia (YSZ) was carefully investigated. Spark plasma sintering of designed powder mixtures at 1400 °C for 30 min and 40 MPa produce fully dense compacts with an average grain size of 0.5–10 μm. The pressure was gradually increased up to 40 MPa using argon gas and was kept until the end of the sintering process. The refined microstructure (0.5–10 μm) obtained in this study has achieved superior compaction resistance values that are ten times more than strength values of conventionally sintered specimens. Such improvement in compaction resistance of the sintered specimens was attributed to particle size refinement and grain boundary enhancement. What’s more, spark-plasma sintered composites containing 10–50 wt% MA revealed higher resistance to low temperature degradation (LTD) than the reference composite that doesn’t contain MA spinel; where about ~ 2.8% of t-ZrO2 was converted into m-ZrO2 in case of the latter composite while aging test didn’t influence at all on the structure of the former composites. The outcomes indicated that MA has a significant effect on m-ZrO2 stabilization into a cubic phase structure that concurrently owned an enhanced and comparable compression resistance to Yttrium-doped t-ZrO2 (Y-TZP). In this respect, the ternary oxide ceramic composite systems prepared in this study present huge potential for development c-ZrO2-based industrial ceramics with a wide spectrum of mechanical characteristics for high-tech engineering applications of harsh-stress and humid environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    S. Saridag, O. Tak, G. Alniacik, Basic properties and types of zirconia: an overview. World J. Stomatol. 2(3), 40 (2013)

    Article  Google Scholar 

  2. 2.

    M.E. Roy, O.F. Noel, L.A. Whiteside, Phase transformation and roughening in artificially aged and retrieved zirconia-toughened alumina femoral heads. J. Arthroplasty 34(4), 772–780 (2019)

    Article  Google Scholar 

  3. 3.

    T. Maridurai, D. Balaji, S. Sagadevan, Synthesis and characterization of yttrium stabilized zirconia nanoparticles. Mater. Res. 19(4), 812–816 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    C. Betül, E. Abi, E. Gamze Yazici, Effects of magnesium chloride addition on stabilization of zirconia. Acad J Sci 3(2), 177–185 (2014)

    Google Scholar 

  5. 5.

    J. Grech, E. Antunes, Zirconia in dental prosthetics: a literature review. J. Mater. Res. Technol. 8(5), 4956–4964 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Y.S. Oh, S.W. Kim, S.M. Lee, H.T. Kim, M.S. Kim, H.S. Moon, Effect of the raw material and coating process conditions on the densification of 8 wt% Y2O3-ZrO2 thermal barrier coating by atmospheric plasma spray. J. Korean Ceram. Soc. 53(6), 628–634 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    U.B. Pal, A.C. Powell, The use of solid-oxide-membrane technology for electrometallurgy. JOM 59(5), 44–49 (2007)

    CAS  Article  Google Scholar 

  8. 8.

    K. Wisniewska, D. Madej, J. Szczerba, The corrosion of Mg-partially stabilized zirconia during service in continuous casting tundish. J. Ceram. Sci. Technol. 9(3), 301–308 (2018)

    Google Scholar 

  9. 9.

    F.F. Lange, G.L. Dunlop, B.I. Davis, Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at 250°C. J. Am. Ceram. Soc. 69(3), 237–240 (1986)

    CAS  Article  Google Scholar 

  10. 10.

    M. Yoshimura, T. Noma, K. Kawabata, S. Sōmiya, Hydrothermal Reactions for Materials Science and Engineering (Springer, Netherlands, 1989), pp. 396–398

    Book  Google Scholar 

  11. 11.

    J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J. Am. Ceram. Soc. 92(9), 1901–1920 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    M. Abdelgawad, S. Li, E.M.M. Ewais, S.M.A. El-Gamal, X. Hou, X. Zhang, D. Pan, A.A.M. El-Amir, Highly-stable, nondegradable M2A-reinforced YSZ ceramic composites prepared by SPS. Int. J. Appl. Ceram. Technol. 18(2), 472–482 (2020)

    Article  Google Scholar 

  13. 13.

    A.A.M. El-Amir, M. Abdelgawad, S. Li, E.M.M. Ewais, S.M.A. El-Gamal, Effect of waste-derived MA spinel on sintering and stabilization behavior of partially stabilized double phase zirconia. Int. J. Appl. Ceram. Technol. 18(1), 203–212 (2021)

    CAS  Article  Google Scholar 

  14. 14.

    E. Apel, C. Ritzberger, N. Courtois, H. Reveron, J. Chevalier, M. Schweiger, F. Rothbrust, V.M. Rheinberger, W. Höland, Introduction to a tough, strong and stable Ce-TZP/MgAl2O4 composite for biomedical applications. J. Eur. Ceram. Soc. 32(11), 2697–2703 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    K. Morita, K. Hiraga, B.N. Kim, H. Yoshida, Y. Sakka, Synthesis of dense nanocrystalline ZrO2-MgAl2O4 spinel composite. Scr. Mater. 53(9), 1007–1012 (2005)

    CAS  Article  Google Scholar 

  16. 16.

    E.M.M. Ewais, D.H.A. Besisa, A.A.M. El-Amir, S.M. El-Sheikh, D.E. Rayan, Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes. J. Alloys Compd. 649, 159–166 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    A.A.M. El-Amir, E.M.M. Ewais, A.R. Abdel-Aziem, A. Ahmed, B.E.H. El-Anadouli, Nano-alumina powders/ceramics derived from aluminum foil waste at low temperature for various industrial applications. J. Environ. Manage. 183, 121–125 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    J. Xu, Y. Zhang, Y. Qu, F. Qi, X. Zhang, J. Yang, Direct coagulation casting of alumina suspension from calcium citrate assisted by pH shift. J. Am. Ceram. Soc. 97(4), 1048–1053 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    A. Marcilla, A. Gomez-Siurana, M.J. Muñoz, F.J. Valdés, Comments on the methods of characterization of textural properties of solids from gas adsorption data. Adsorpt. Sci. Technol. 27(1), 69–84 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    A. Maji, G. Choubey, Microstructure and mechanical properties of alumina toughened zirconia (ATZ). Mater. Today Proc. 5(2), 7457–7465 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    V. Lughi, V. Sergo, Low temperature degradation-aging-of zirconia: a critical review of the relevant aspects in dentistry. Dent. Mater. 26(8), 807–820 (2010)

    CAS  Article  Google Scholar 

  22. 22.

    L. Wang, X. Yang, X. Liu, Z. Jiao, Z. Huang, Effects of particle size on densification behavior of Si3N4 ceramics. Key Eng. Mater. 697, 182–187 (2016)

    Article  Google Scholar 

  23. 23.

    A.A.M. El-Amir, M. Abdelgawad, S. Li, E.M.M. Ewais, S.M.A. El-Gamal, Effect of waste-derived MA spinel on sintering and stabilization behavior of partially-stabilized double phase zirconia. Int. J. Appl. Ceram. Technol. 18(1), 203–212 (2020)

    Article  Google Scholar 

  24. 24.

    M. Abdelgawad, S.M.A. El-Gamal, E.M.M. Ewais, S. Li, Effect of magnesia rich spinel on densification and stabilization behavior of monoclinic zirconia. J. Korean Ceram. Soc. 58, 276–286 (2021)

    CAS  Article  Google Scholar 

  25. 25.

    T. Zhu, Z. Xie, Y. Han, S. Li, Microstructure and mechanical properties of ZTA composites fabricated by oscillatory pressure sintering. Ceram. Int. 44(1), 505–510 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    A. Talimian, V. Pouchly, K. Maca, D. Galusek, Densification of magnesium aluminate spinel using manganese and cobalt fluoride as sintering aids. Materials (Basel) 13(1), 102 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    E. Serrano Pérez, H. Martinez Gutierrez, K.J. Martinez Gonzalez, E. Marín Moares, F. Juárez López, Densification and microstructure of spark plasma sintered 7YSZ–Gd2O3 ceramic nano-composites. J. Asian Ceram. Soc. 5(3), 266–275 (2017)

    Article  Google Scholar 

  28. 28.

    A. Talimian, V. Pouchly, H.F. El-Maghraby, K. Maca, D. Galusek, Transparent magnesium aluminate spinel: Effect of critical temperature in two-stage spark plasma sintering. J. Eur. Ceram. Soc. 40(6), 2417–2425 (2020)

    CAS  Article  Google Scholar 

  29. 29.

    K. Harada, A. Shinya, D. Yokoyama, A. Shinya, Effect of loading conditions on the fracture toughness of zirconia. J. Prosthodont. Res. 57(2), 82–87 (2013)

    Article  Google Scholar 

  30. 30.

    I. Ganesh, A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int. Mater. Rev. 58(2), 63–112 (2013)

    CAS  Article  Google Scholar 

  31. 31.

    D. Li, Y. Liu, Y. Zhong, L. Liu, E. Adolfsson, Z. Shen, Dense and strong ZrO2 ceramics fully densified in <15 min. Adv. Appl. Ceram. 118(1–2), 23–29 (2019)

    CAS  Article  Google Scholar 

Download references


This work was supported by the financial of the National Natural Science Foundation of China [Grant numbers 51571160 and 51871180]; Natural Science Basic Research Plan in Shaanxi Province of China [Grant number 2015JM5233].

Author information



Corresponding authors

Correspondence to Ahmed A. M. El-Amir or Mahmoud Abdelgawad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Amir, A.A.M., Li, S., Abdelgawad, M. et al. MgAl2O4-reinforced c-ZrO2 ceramics prepared by spark plasma sintering. J. Korean Ceram. Soc. (2021).

Download citation


  • Magnesium aluminate spinel
  • Zirconia
  • Stabilization
  • Reinforcement
  • Spark plasma sintering