Skip to main content

Aspects of development and properties of densely sintered of ultra-high-frequency radio-transparent ceramics of cordierite composition

Abstract

The paper presents the results of research of cordierite ceramics; within its composition, a part of components is introduced using relatively low-melting MABS glass. After firing at a temperature of 1375 °C, densely sintered materials with low values of LCTE (17.7–18.5) × 10–7 deg–1 were obtained, which predetermine their high thermal stability (not lower than 900 °C). The only crystalline phase of experimental ceramics is α-cordierite, which forms its structural matrix. Crystals of α-cordierite of 1–2 μm in size are tightly interconnected via thin layers of the residual glass phase. Cordierite ceramics is characterized by zero values of water absorption and open porosity, as well as high values of mechanical compressive strength. In addition, the dense microstructure allows achieving consistently high dielectric values (ε = 4.9; tan δ = 0.0014) in an ultra-high-frequency electromagnetic field (1010 Hz). The synthesized ceramics can be successively used as radio-transparent materials, including structural ones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    P.D. Sarkisov, D.V. Grashchenkov, L.A. Orlova et al., Modern achievements in the field of creating high-temperature radiotransparent materials (in Russian). Tech. Technol. Silic. 1, 2–10 (2009)

    Google Scholar 

  2. 2.

    Y.E. Pivinskii, The half of a century period of the domestic ceramics technology development (in Russian) Part 1. Novye Ogneup. (New Refract.) 3, 105–112 (2017). https://doi.org/10.17073/1683-4518-2017-3-105-112

    Article  Google Scholar 

  3. 3.

    M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015). https://doi.org/10.1179/1743280415Y.0000000007

    CAS  Article  Google Scholar 

  4. 4.

    E.D. Zanotto, A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 89, 19–27 (2010)

    CAS  Google Scholar 

  5. 5.

    D. Hotza, A.P.N. De Oliveira, New silicate glass-ceramic materials and composites. Adv. Sci. Technol. 68, 1–12 (2010). https://doi.org/10.4028/www.scientific.net/AST.68.1

    CAS  Article  Google Scholar 

  6. 6.

    A.V. Zaychuk, A.A. Amelina, Search for the ways to improve the physical and technical parameters of quartz ceramics. Voprosy Khimii i Khimicheskoi Tekhnologii 6, 63–67 (2017)

    Google Scholar 

  7. 7.

    E.S. Khomenko, A.V. Zaichuk, E.V. Karasik, A.A. Kunitsa, Quartz ceramics modified by nanodispersed silica additive. Funct. Mater. 25, 613–618 (2018). https://doi.org/10.15407/fm25.03.613

    CAS  Article  Google Scholar 

  8. 8.

    E.S. Khomenko, A.V. Zaichuk, E.V. Karasik, V.D. Ivchenko, N.M. Sribniak, B.M. Datsenko, Improvement of strength characteristics of quartz ceramics. Funct. Mater. 27, 264–269 (2020). https://doi.org/10.15407/fm27.02.264

    CAS  Article  Google Scholar 

  9. 9.

    V.O. Soares, G.R. Paula, O. Peitl et al., Effect of ion exchange on the sinter-crystallisation of low expansion Li2O–Al2O3–SiO2 glass-ceramics. Glass Technol. Eur. J. Glass Sci. Technol. Part A 52, 50–54 (2011)

    CAS  Google Scholar 

  10. 10

    A.V. Zaichuk, A.A. Amelina, Y.S. Khomenko, A.S. Baskevich, Y.R. Kalishenko, Heat-resistant ceramics of β-eucryptite composition: peculiarities of production, microstructure and properties. Voprosy Khimii i Khimicheskoi Tekhnologii 2, 52–59 (2020). https://doi.org/10.32434/0321-4095-2020-129-2-52-59

    Article  Google Scholar 

  11. 11.

    Y.M. Sung, W.C. Kwak, Influence of various heating procedures on the sintered density of Sr-celsian glass-ceramic. J. Mater. Sci. Lett. 21, 841–843 (2002). https://doi.org/10.1023/A:1015710309425

    CAS  Article  Google Scholar 

  12. 12

    O. Zaichuk, A. Amelina, Yu. Hordieiev, Y. Kalishenko, N. Sribniak, S. Halushka, D. Borodai, A. Borodai, Patterns in the synthesis processes, the microstructure and properties of strontium-anorthite ceramics modified by glass of spodumene composition. East. Eur. J. Enterp. Technol. 6, 15–26 (2020). https://doi.org/10.15587/1729-4061.2020.216754

    Article  Google Scholar 

  13. 13.

    C.M. López-Badillo, J. López-Cuevas, C.A. Gutiérrez-Chavarría, J.L. Rodríguez-Galicia, M.I. Pech-Canul, Synthesis and characterization of BaAl2Si2O8 using mechanically activated precursor mixtures containing coal fly ash. J. Eur. Ceram. Soc. 33, 3287–3300 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.05.014

    CAS  Article  Google Scholar 

  14. 14

    A.V. Zaichuk, A.A. Amelina, Yu.S. Hordieiev, Y.R. Kalishenko, N.N. Sribniak, Synthesis and characteristic of celsian ceramics with the use of glass in the system Li2O–Al2O3–B2O3–SiO2. Funct. Mater. 27, 827–835 (2020). https://doi.org/10.15407/fm27.04.827

    CAS  Article  Google Scholar 

  15. 15.

    A.S. Chainikova, M.V. Voropaeva, L.A. Alekseeva et al., Current state of development in the field of radio-transparent cordierite sitalls (review) (in Russian). Aviat. Mater. Technol. S6, 45–51 (2014)

    Google Scholar 

  16. 16.

    Z. Shamsudin, A. Hodzic, C. Soutis et al., Characterisation of thermo-mechanical properties of MgO–Al2O3–SiO2 glass ceramic with different heat treatment temperatures. J. Mater. Sci. 46, 5822–5829 (2011). https://doi.org/10.1007/s10853-011-5538-0

    CAS  Article  Google Scholar 

  17. 17

    H. Ohsato, J. Varghese, T. Vahera et al., Micro/millimeter-wave dielectric indialite/cordierite glass-ceramics applied as LTCC and direct casting substrates: current status and prospects. J. Korean Ceram. Soc. 56, 526–533 (2019). https://doi.org/10.4191/kcers.2019.56.6.01

    CAS  Article  Google Scholar 

  18. 18.

    L. Stoch, J. Lelatko, Mechanisms of crystal structure organization in magnesium aluminosilicate glass: HREM and analytical study. Glass Technol. Eur. J. Glass Sci. Technol. Part A 48, 183–188 (2008)

    Google Scholar 

  19. 19.

    M. Guignard, L. Cormier, V. Montouillout, Environment of titanium and aluminum in a magnesium alumino-silicate glass. J. Phys. Condens. Matter. 21, 1–10 (2009). https://doi.org/10.1088/0953-8984/21/37/375107

    CAS  Article  Google Scholar 

  20. 20.

    A.A. Poteshkina, J.A. Uvarenkova, V.I. Ivanova, B.M. Ivanov, Ceramic dielectric with low permeability for high frequency technology (in Russian). St. Petersbg. State Univ. Bull. S.4 2, 285–293 (2015)

    Google Scholar 

  21. 21

    A. Aşkin, I. Tatar, Ş Kilinç, Ö. Tezel, The utilization of waste magnesite in the production of the cordierite ceramic. Energy Procedia 107, 137–143 (2017). https://doi.org/10.1016/j.egypro.2016.12.151

    CAS  Article  Google Scholar 

  22. 22.

    D.M. Ivanov, N.A. Lukyanova, V.I. Ivanova, V.V. Petukhova, Synthesis of cordierite for high-frequency application (in Russian). St. Petersbg. State Univ. Bull. S.4 4, 77–82 (2009)

    Google Scholar 

  23. 23.

    J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Effect of impurities content from minerals on phase transformation, densification and crystallization of α-cordierite glass-ceramic. J. Alloys Compd. 509, 7645–7651 (2011). https://doi.org/10.1016/j.egypro.2016.12.151

    CAS  Article  Google Scholar 

  24. 24

    A.V. Zaichuk, A.A. Amelina, Y.V. Karasik, Y.S. Khomenko, V.A. Lementareva, D.Y. Saltykov, Radio-transparent ceramic materials of spodumene-cordierite composition. Funct. Mater. 26, 174–181 (2019). https://doi.org/10.15407/fm26.01.174

    CAS  Article  Google Scholar 

  25. 25.

    J. Wu, C. Hu, X. Xu et al., Preparation and thermal shock resistance of cordierite-spodumene composite ceramics for solar heat transmission pipeline. Ceram. Int. 42, 13547–13554 (2016). https://doi.org/10.1016/j.ceramint.2016.05.147

    CAS  Article  Google Scholar 

  26. 26.

    A.E. Reda, F. Abd-El-Raoof, S.E. Ahmed, Sintering and dielectric behavior for doped cordierite by xCuO within MgO(1–x)–Al2O3–SiO2 ceramics. Mater. Chem. Phys. 243, 122616 (2020). https://doi.org/10.1016/j.matchemphys.2019.122616

    CAS  Article  Google Scholar 

  27. 27.

    F.J. Torres, U.R. Rodríguez-Mendoza, V. Lavín, E. Ruiz de Sola, J. Alarcón, Evolution of the structural and optical properties from cobalt cordierite glass to glass-ceramic based on spinel crystalline phase materials. J. NonCryst. Solids 353, 4093–4101 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.06.014

    CAS  Article  Google Scholar 

  28. 28.

    M.A. Zalapa-Garibaya, D. Torres-Torres, A.M. Arizmendi-Morquecho, S.Y. Reyes-López, Effect of NiO and MoO3 addition on the crystallinity and mechanical properties of α-cordierite and β-cordierite in the MgO–Al2O3–SiO2 system. Results Phys. 13, 4093–4101 (2019). https://doi.org/10.1016/j.rinp.2019.102227

    Article  Google Scholar 

  29. 29.

    M. Senthil Kumar, A. Elaya Perumal, T.R. Vijayaram, Synthesis, characterization and sintering behavior influencing mechanical, thermal and physical properties of pure cordierite and cordierite-ceria. J. Adv. Ceram. 4, 22–30 (2015). https://doi.org/10.1016/j.jmrt.2013.03.016

    CAS  Article  Google Scholar 

  30. 30.

    N. Obradović, N. Dordević, S. Filipović et al., Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive. Powder Technol. 218, 157–161 (2012). https://doi.org/10.1016/j.powtec.2011.12.012

    CAS  Article  Google Scholar 

  31. 31.

    S.-L. Fu, L.-S. Chen, J.-H. Chou, Sintering of cordierite glass-ceramic with lead borosilicate glass. Ceram. Int. 20, 67–72 (1994). https://doi.org/10.1016/0272-8842(94)90010-8

    CAS  Article  Google Scholar 

  32. 32.

    H. Gui, C. Li, C. Lin et al., Glass forming, crystallization, and physical properties of MgO–Al2O3–SiO2–B2O3 glass-ceramics modified by ZnO replacing MgO. J. Eur. Ceram. Soc. 39, 1397–1410 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.10.002

    CAS  Article  Google Scholar 

  33. 33.

    N.A. Minakova, A.V. Zaichuk, Y.I. Belyi, The structure of borate glass. Glass Ceram. 65, 70–73 (2008). https://doi.org/10.1007/s10717-008-9017-2

    CAS  Article  Google Scholar 

  34. 34.

    M.V. Andreev, O.O. Drobakhin, Y.N. Privalov, D.Y. Saltykov, Measurement of dielectric material properties using coupled biconical resonators. Telecommun. Radio Eng. 73, 1017–1032 (2014). https://doi.org/10.1615/TelecomRadEng.v73.i11.70/

    Article  Google Scholar 

  35. 35.

    T. Gasparik, System MgO–Al2O3–SiO2, in Phase Diagrams for Geoscientists (Springer, New York, 2014). https://doi.org/10.1007/978-1-4614-5776-3_3

    Book  Google Scholar 

  36. 36.

    A.A. Appen, Himiya stekla [Chemistry of glass] (Chemistry, Leningrad, 1974) (in Russian)

    Google Scholar 

Download references

Funding

This study was funded by Ministry of Education and Science of Ukraine (Grant no. 0120U101969).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Zaichuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaichuk, A., Amelina, A., Kalishenko, Y. et al. Aspects of development and properties of densely sintered of ultra-high-frequency radio-transparent ceramics of cordierite composition . J. Korean Ceram. Soc. 58, 483–494 (2021). https://doi.org/10.1007/s43207-021-00125-5

Download citation

Keywords

  • Radio-transparent ceramics
  • Cordierite
  • Sintering
  • Crystallization
  • Microstructure