Skip to main content

Electrospun YSZ/silica nanofibers with controlled fiber diameters for air/water filtration media


To develop electrospun ceramic nanofibers as water/air filtration media, it is important to control the fiber diameter. This is because the fiber diameter of the electrospun ceramic nanofibers determines the mean/largest pore sizes, and this governs the permeability and filtration efficiency. Herein, the content (or concentration) of ceramic precursors and polymeric binders was adjusted in the electrospinning solution to control the fiber diameter of electrospun yttria-stabilized zirconia (YSZ)/silica nanofiber. This can influence the viscosity of the electrospinning solution and directly affect the fiber diameter of the electrospun YSZ/silica nanofibers through the electrospinning process. Increasing the content of ceramic precursors sequentially confirmed that the fiber diameter of electrospun YSZ/silica nanofibers increases gradually. Conversely, adjusting the content of the polymeric binder could shift the overall distribution of the fiber diameters. In other words, it is more effective to reduce the content of polymer binder than to reduce the content of ceramic precursors to manufacture smaller fiber diameters. The polymer binder content plays a significant role in promoting the mean/largest pore sizes and filtration efficiency. The aim of this research was to develop the electrospun nanofibrous microfiltration (MF) membranes or high-efficiency particulate air (HEPA) filters for water/air remediation. To confirm this hypothesis, the associated characterizations were conducted to evidence the superior filtration performances. For example, a rejection rate (%) of 99.5% (0.5 μm polymeric particles) and a filtration efficiency of 99.9% (0.06 μm NaCl particles) were obtained to prove water and air filtration capacity, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    H. Esfahani, R. Jose, S. Ramakrishna, Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications, Materials, 10, (2017)

  2. 2.

    S.H. Ja, Y. Koo, M. Ahn, M. Choi, D. Byun, W. Lee, Controlling the Diameter of Electrospun Yttria-Stabilized Zirconia Nanofibers. J. Am. Ceram. Soc. 99, 3146–3150 (2016)

    Article  Google Scholar 

  3. 3.

    A.B. D. Gugulothu, R. Nerella, R. Ajmer, and M. Bechelany, Fabrication of Nanofibers: Electrospinning and Non-electrospinning Techniques, in: M.B. Ahmed Barhoum, Abdel Salam Hamdy Makhlouf (Ed.) Handbook of Nanofibers, Springer, Cham (2019), pp. 45–77.

  4. 4.

    H. Wu, W. Pan, D.D. Lin, H.P. Li, Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1, 2–23 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    J. Song, X. Wang, J. Yan, J. Yu, G. Sun, B. Ding, Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci Rep 7, 1636 (2017)

    Article  Google Scholar 

  6. 6.

    J. Kim, J. Lee, J.H. Ha, I.H. Song, Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes. Ceram Int 45, 17696–17704 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    N.A.R. Shichao Zhang, N. Tang, H. Liu, X. Yin, J. Yu, B. Ding, Electrospun nanofibers for air filtration, in: X.W. Bin Ding, Jianyong Yu. (Ed.) Electrospinning: Nanofabrication and Applications, William Andrew2019, pp. 365–389.

  8. 8.

    I. Shepa, E. Mudra, M. Vojtko, O. Milkovic, Z. Dankova, V. Antal, A. Annusova, E. Majkova, J. Dusza, Influence of the polymer precursor blend composition on the morphology of the electrospun oxide ceramic fibers. Results Phys, 13, (2019)

  9. 9.

    J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, Electrospinning and electrospun nanofibers: methods materials, and applications. Chem. Rev. 119, 5298–5415 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    Z.U. Abideen, J.-H. Kim, J.-H. Lee, J.-Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Electrospun metal oxide composite nanofibers gas sensors: a review. J. Korean Ceram. Soc. 54, 366–379 (2017)

    Article  Google Scholar 

  11. 11.

    H. An, L. Kang, H.-J. Ahn, Y.-H. Choa, C.G. Lee, Synthesis and characterization of TiO2/CuS Nanocomposite fibers as a visible light-driven photocatalyst. J. Korean Ceram. Soc. 55, 267–274 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    Y.C. Ahn, S.K. Park, G.T. Kim, Y.J. Hwang, C.G. Lee, H.S. Shin, J.K. Lee, Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6, 1030–1035 (2006)

    Article  Google Scholar 

  13. 13.

    M.K. Selatile, S.S. Ray, V. Ojijo, R. Sadiku, Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Adv. 8, 37915–37938 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    S. Lee, J.-H. Ha, J. Lee, I.-H. Song, Enhanced mechanical strength of talc-containing porous kaolin prepared by a replica method. J. Korean Ceram. Soc. 58, 123–133 (2020)

    Article  Google Scholar 

  15. 15.

    L.S. Tijing, H.K. Woo, YC. Yao, M.J. Ren, Electrospinning for Membrane Fabrication: Strategies and Applications, in: E.D.L.G.E. Fontananova (Ed.) Comprehensive Membrane Science and Engineering, Elsevier (2017), pp. 418 - 444.

  16. 16.

    Y.-G.K.J. Yu, D.Y. Kim, S. Lee, H. Joh, S.M. Jo, Super high flux microfiltration based on electrospun nanofibrous m-aramid membranes for water treatment. Macromol Res 23, 601–606 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    R. Wang, Y. Liu, B. Li, B.S. Hsiao, B. Chu, Electrospun nanofibrous membranes for high flux microfiltration. J Membrane Sci 392, 167–174 (2012)

    Article  Google Scholar 

  18. 18.

    S. Kaur, S. Sundarrajan, D. Rana, T. Matsuura, S. Ramakrishna, Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. J Membrane Sci 392, 101–111 (2012)

    Article  Google Scholar 

  19. 19.

    K. Yoon, B.S. Hsiao, B. Chu, High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J Membrane Sci 326, 484–492 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    X.Z. Haolun Wang, N. Wang, Y. Li, X. Feng, Y. Huang, C. Zhao, Z. Liu, M. Fang, G. Ou, H. Gao, X. Li, H. Wu, Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci Adv 3, (2017)

  21. 21.

    P. Karami, B. Khorshidi, M. McGregor, J.T. Peichel, J.B.P. Soares, M. Sadrzadeh, Thermally stable thin film composite polymeric membranes for water treatment: a review. J Clean Prod, 250, (2020)

  22. 22.

    H.-Y. Kim, H.-K. Park, Y.-W. Ju, Fabrication of the novel Fe2+αO3+α–CoFe2O4 composite fibers and their magnetic properties. J. Korean Ceram. Soc. 57, 423–431 (2020)

    CAS  Article  Google Scholar 

  23. 23.

    Y.-M. Jo, C.-S. Lee, R. Wang, J.-S. Park, J.-H. Lee, Highly sensitive and selective ethanol sensors using magnesium doped indium oxide hollow spheres. J. Korean Ceram. Soc. 54, 303–307 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    X. Mao, Y. Si, Y.C. Chen, L.P. Yang, F. Zhao, B. Ding, J.Y. Yu, Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2, 12216–12223 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    M.J. Chang, W.N. Cui, J. Liu, Facile preparation of porous inorganic SiO2 nanofibrous membrane by electrospinning method. J Nanomater, (2017)

  26. 26.

    Y. Wang, W. Li, Y.G. Xia, X.L. Jiao, D.R. Chen, Electrospun flexible self-standing gamma-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media. J Mater Chem A 2, 15124–15131 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    D. Li, Y.N. Xia, Fabrication of titania nanofibers by electrospinning. Nano Lett 3, 555–560 (2003)

    CAS  Article  Google Scholar 

  28. 28.

    Y.F. Tang, Z.W. Liu, K. Zhao, S. Fu, Adsorption and separation properties of positively charged ZrO2 nanofibrous membranes fabricated by electrospinning. RSC Adv. 7, 42505–42512 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    X. Liu, S.X. Wang, J. Miao, Y. Liu, X. Yan, S.Q. Chen, Enhanced performance of Fe2O3 doped yttria stabilized zirconia hollow fiber membranes for water treatment. Ceram Int 42, 15618–15622 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    Y.B.X. Mao, J. Yu, B. Ding, Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. J. Am. Ceram. Soc. 99, 2760–2768 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    J.Y. Huh, J. Lee, S.Z.A. Bukhari, J.H. Ha, I.H. Song, Development of TiO2-coated YSZ/silica nanofiber membranes with excellent photocatalytic degradation ability for water purification. Sci Rep 10, 17811 (2020)

    CAS  Article  Google Scholar 

  32. 32.

    S.J. Eichhorn, W.W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2, 309–318 (2005)

    Article  Google Scholar 

  33. 33.

    A.A.T.H. Matsumoto, Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes 1, 249–264 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    E. Davies, A. Lowe, M. Sterns, K. Fujihara, S. Ramakrishna, Phase morphology in electrospun zirconia microfibers. J Am Ceram Soc 91, 1115–1120 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    G. Cadafalch Gazquez, V. Smulders, S.A. Veldhuis, P. Wieringa, L. Moroni, B.A. Boukamp, J.E. Ten Elshof, Influence of solution properties and process parameters on the formation and morphology of YSZ and NiO Ceramic nanofibers by electrospinning. Nanomaterials (Basel), 7, (2017)

  36. 36.

    M.M. Zhu, J.Q. Han, F. Wang, W. Shao, R.H. Xiong, Q.L. Zhang, H. Pan, Y. Yang, S.K. Samal, F. Zhang, C.B. Huang, Electrospun Nanofibers Membranes for Effective Air Filtration, Macromol Mater Eng, 302, (2017)

  37. 37.

    H.S.X. Mao, J. Song, Y. Bai, J. Yu, B. Ding, Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes. CrystEngComm 18, 1139–1146 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    S.C. Wong, A. Baji, S.W. Leng, Effect of fiber diameter on tensile properties of electrospun poly(epsilon-caprolactone). Polymer 49, 4713–4722 (2008)

    CAS  Article  Google Scholar 

  39. 39.

    Y. Peng, Y. Xie, L. Wang, L. Liu, S. Zhu, D. Ma, L. Zhu, G. Zhang, X. Wang, High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J. Eur. Ceram. Soc. 41, 1471–1480 (2021)

    CAS  Article  Google Scholar 

  40. 40.

    P.K. Panda, Ceramic nanofibers by electrospinning technique—a review. Trans Indian Ceram S 66, 65–76 (2008)

    Article  Google Scholar 

  41. 41.

    L.F. Yin, J.F. Niu, Z.Y. Shen, Y.P. Bao, S.Y. Ding, Preparation and photocatalytic activity of nanoporous zirconia electrospun fiber mats. Mater Lett 65, 3131–3133 (2011)

    CAS  Article  Google Scholar 

  42. 42.

    J. Choi, A. Ide, Y.B. Truong, I.L. Kyratzis, R.A. Caruso, High surface area mesoporous titanium-zirconium oxide nanofibrous web: a heavy metal ion adsorbent. J Mater Chem A 1, 5847–5853 (2013)

    CAS  Article  Google Scholar 

  43. 43.

    X.Z.Y. Wang, X. Jiao, and D. Chen, Electrospun Filters for Air Filtration: Comparison with Existing Air Filtration Technologies, in: M.L.F.C.G.S. Ramakrishna (Ed.) Filtering Media by Electrospinning Next Generation Membranes for Separation Applications, Springer, Switzerland, 2018, pp. 47–67.

  44. 44.

    D.P. Li, M.W. Frey, Y.L. Joo, Characterization of nanofibrous membranes with capillary flow porometry. J Membrane Sci 286, 104–114 (2006)

    CAS  Article  Google Scholar 

  45. 45.

    H.M.a.B.S. Hsiao, Current Advances on Nanofiber Membranes for Water Purification Applications, in: C.G.S.a.R. Maria Letizia Focarete (Ed.) Filtering Media by Electrospinning Next Generation Membranes for Separation Applications, Springer, Switzerland, 2018, pp. 25–46.

  46. 46.

    C.Y. Yang, G.D. Zhu, Z. Yi, Y.Y. Qiu, L.F. Liu, C.J. Gao, Tailoring the pore size and permeability of isoporous membranes through blending with poly(ethylene glycol): Toward the balance of macro- and microphase separation, J Membrane Sci, 598, (2020)

  47. 47.

    J. Rnjak-Kovacina, A.S. Weiss, Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev 17, 365–372 (2011)

    CAS  Article  Google Scholar 

  48. 48.

    H. Strathmann, Membranes and Membrane Separation Processes, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005).

    Google Scholar 

  49. 49.

    A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012)

    CAS  Article  Google Scholar 

  50. 50.

    A.K. Fard, G. McKay, A. Buekenhoudt, H. Al Sulaiti, F. Motmans, M. Khraisheh, M. Atieh, Inorganic Membranes: Preparation and Application for Water Treatment and Desalination, Materials, 11, (2018)

  51. 51.

    X. Mao, Y. Bai, J.Y. Yu, B. Ding, Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. J Am Ceram Soc 99, 2760–2768 (2016)

    CAS  Article  Google Scholar 

  52. 52.

    C.X.L.M. Makaremi, P. Pasbakhsh, S.M. Lee, K.L. Goh, H. Changd, E.S. Chane, Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications. RSC Adv. 6, 53882–53893 (2016)

    CAS  Article  Google Scholar 

  53. 53.

    P. Arribas, M.C. Garcia-Payo, M. Khayet, L. Gil, Heat-treated optimized polysulfone electrospun nanofibrous membranes for high performance wastewater microfiltration. Sep Purif Technol 226, 323–336 (2019)

    CAS  Article  Google Scholar 

  54. 54.

    N. Wang, X.F. Wang, B. Ding, J.Y. Yu, G. Sun, Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. J. Mater. Chem. 22, 1445–1452 (2012)

    CAS  Article  Google Scholar 

  55. 55.

    X.L. Zhao, Y.Y. Li, T. Hua, P. Jiang, X. Yin, J.Y. Yu, B. Ding, Cleanable Air Filter Transferring Moisture and Effectively Capturing PM2.5, Small, 13, (2017)

Download references


This work is financially supported by (1) the Technology Innovation Program (20003782) of the Ministry of Trade, Industry, and Energy (Republic of Korea) and (2) the Research Program (PNK7420) of the Korea Institute of Materials Science (Republic of Korea).

Author information



Corresponding author

Correspondence to Jongman Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Ha, JH., Song, IH. et al. Electrospun YSZ/silica nanofibers with controlled fiber diameters for air/water filtration media. J. Korean Ceram. Soc. 58, 471–482 (2021).

Download citation


  • Electrospinning
  • Ceramic nanofiber
  • YSZ/silica
  • Polyvinylpyrrolidone
  • Filter