Characterizing electrical breakdowns upon reoxidation atmosphere for reliable multilayer ceramic capacitors

Abstract

Electrical breakdowns of multilayer ceramic capacitors (MLCCs) manifest an increase in leakage current and are characterized as a function of atmospheric reoxidation. The atmospheric reoxidation is controlled with respect to the theoretical oxygen partial pressure for the oxidation of Ni internal electrodes. The breakdowns are characterized by a Maxwell–Wagner polarization technique, which dominantly exhibits space-charge-limited and Poole–Frenkel currents for all measured samples. The threshold voltage for the transition between these two conduction modes is suggested as an index for the robustness of the grain boundary resistance of BaTiO3; therefore, the breakdown voltage. The reoxidation atmosphere, which prevents the Ni oxidation, increases the threshold voltage, dramatically enhancing the breakdown voltage and insulation resistance. Impedance spectroscopy and scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy reveal that the cation distribution throughout BaTiO3 grains and grain boundaries changes during the reoxidation, including Ni cations from the internal electrodes, which affects the grain boundary resistance and determines the breakdown voltage of MLCCs with Ni internal electrodes. These observations emphasize that the reoxidation should be concurrently optimized in terms of the cation redistribution and elimination of oxygen vacancies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M. Stengel, D. Vanderbilt, N.A. Spaldin, Enhancement of ferroelectricity at metal–oxide interfaces. Nat. Mater. 8, 392–397 (2009). https://doi.org/10.1038/nmat2429

    CAS  Article  Google Scholar 

  2. 2.

    M. Dawber, K.M. Rabe, J.F. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2009). https://doi.org/10.1103/RevModPhys.77.1083

    CAS  Article  Google Scholar 

  3. 3.

    R. Waser, T. Baiatu, K. Hardtl, DC electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. Soc. 73, 1645–1653 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb09809.x

    CAS  Article  Google Scholar 

  4. 4.

    S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama, T. Nomura, Degradation of multilayer ceramic capacitors with nickel electrodes. J. Am. Ceram. Soc. 74, 2739–2746 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06837.x

    CAS  Article  Google Scholar 

  5. 5.

    M.R. Opitz, K. Albertsen, J.J. Beeson, D.F. Hennings, J.L. Routbort, C.A. Randall, Kinetic process of reoxidation of base metal technology BaTiO3-based multilayer capacitors. J. Am. Ceram. Soc. 86, 1879–1884 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03576.x

    CAS  Article  Google Scholar 

  6. 6.

    Y.-M. Chiang, T. Takagi, Grain-boundary chemistry of barium titanate and strontium titanate: I, high-temperature equilibrium space charge. J. Am. Ceram. Soc. 73, 3278–3285 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06450.x

    CAS  Article  Google Scholar 

  7. 7.

    R. Waser, M. Klee, Theory of conduction and breakdown in perovskite thin films. Integr. Ferroelectr. 2, 23–40 (1992). https://doi.org/10.1080/10584589208215729

    CAS  Article  Google Scholar 

  8. 8.

    S. Rodewald, J. Fleig, J. Maier, Resistance degradation of iron-doped strontium titanate investigated by spatially resolved conductivity measurements. J. Am. Ceram. Soc. 83, 1969–1976 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01499.x

    CAS  Article  Google Scholar 

  9. 9.

    M. Vollman, R. Waser, Grain boundary defect chemistry of acceptor-doped titanates: space charge layer width. J. Am. Ceram. Soc. 77, 235–243 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb06983.x

    CAS  Article  Google Scholar 

  10. 10.

    H.-I. Yoo, C.-E. Lee, Two-fold diffusion kinetics of oxygen re-equilibration in donor-doped BaTiO3. J. Am. Ceram. Soc. 88, 617–623 (2005). https://doi.org/10.1111/j.1551-2916.2005.00123.x

    CAS  Article  Google Scholar 

  11. 11.

    W. Preis, W. Sitte, Electronic conductivity and chemical diffusion in n-conducting barium titanate ceramics at high temperatures. Solid State Ionics 177, 3093–3098 (2006). https://doi.org/10.1016/j.ssi.2006.07.053

    CAS  Article  Google Scholar 

  12. 12.

    J. Itoh, I. Yashima, N. Ohashi, I. Sakaguchi, H. Haneda, J. Tanaka, Ni ion diffusion in barium titanate perovskite. J. Ceram. Soc. Jpn. 109, 955–959 (2001). https://doi.org/10.2109/jcersj.109.1275_955

    CAS  Article  Google Scholar 

  13. 13.

    S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun. 191, 19–24 (2014). https://doi.org/10.1016/j.ssc.2014.04.001

    CAS  Article  Google Scholar 

  14. 14.

    I. Stolichnov, A. Tagantsev, Space-charge influenced-injection model for conduction in Pb(ZrxTi1−x)O3 thin films. J. Appl. Phys. 84, 3216–3225 (1998). https://doi.org/10.1063/1.368888

    CAS  Article  Google Scholar 

  15. 15.

    K. Lee, B.R. Rhee, C. Lee, Leakage current-voltage characteristics of ferroelectric thin film capacitors, J. Kor Phys. Soc. 38, 723–728 (2001). https://www.jkps.or.kr/journal/view.html?uid=4426&vmd=Full

  16. 16.

    G.M. Kale, D.J. Fray, Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems. Metall. Mater. Trans. B 25, 373–378 (1994). https://doi.org/10.1007/BF02663386

    Article  Google Scholar 

  17. 17.

    H. Hu, S.B. Krupanidhi, Current–voltage characteristics of ultrafine-grained ferroelectric Pb(Zr, Ti)o3 thin films. J. Mater. Res. 9, 1484–1498 (1994). https://doi.org/10.1557/JMR.1994.1484

    CAS  Article  Google Scholar 

  18. 18.

    W. Osak, K. Tkacz, Investigation of I–V characteristics in polycrystalline BaTiO3, J. Phys. D: Appl. Phys. 22, 1746–1750 (1989). https://iopscience.iop.org/article/10.1088/0022-3727/22/11/028.

  19. 19.

    D.J. Wouters, G.J. Willems, H.E. Maes, Electrical conductivity in ferroelectric thin films. Microelectron. Eng. 29, 249–256 (1995). https://doi.org/10.1016/0167-9317(95)00155-7

    CAS  Article  Google Scholar 

  20. 20.

    B. Nagaraj, S. Aggarwal, T.K. Song, T. Sawhney, R. Ramesh, Leakage current mechanisms in lead-based thin-film ferroelectric capacitors. Phys. Rev. B 59, 16022–16027 (1999). https://doi.org/10.1103/PhysRevB.59.16022

    CAS  Article  Google Scholar 

  21. 21.

    S.-H. Yoon, S.-H. Kim, D.-Y. Kim, Correlation between I (current)–V (voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor. J. Appl. Phys. 114, 074102 (2013). https://doi.org/10.1063/1.4818947

    CAS  Article  Google Scholar 

  22. 22.

    Y. Sakabe, Y. Hamaji, H. Sano, N. Wada, Effects of rare-earth oxides on the reliability of X7R dielectrics, Jpn. J. Appl. Phys. 41, 5668–5673 (2002). https://iopscience.iop.org/article/10.1143/JJAP.41.5668/meta.

  23. 23.

    A.I. Lebedev, I.A. Sluchinskaya, On the nature of change in Ni oxidation state in BaTiO3−SrTiO3 system. Ferroelectrics 501, 1–8 (2016). https://doi.org/10.1080/00150193.2016.1198196

    CAS  Article  Google Scholar 

  24. 24.

    T. Yoshida, T. Tanaka, H. Yoshida, T. Funabiki, S. Yoshida, Study on the dispersion of nickel ions in the NiO−MgO system by X-ray absorption fine structure. J. Phys. Chem. 100, 2302–2309 (1996). https://doi.org/10.1021/jp952526p

    CAS  Article  Google Scholar 

  25. 25.

    H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohsato, T. Okuda, The effect of MgO and rare-earth oxide on formation behavior of core-shell structure in BaTiO3, Jpn. J. Appl. Phys. 36, 5954–5957 (1997). https://iopscience.iop.org/article/https://doi.org/10.1143/JJAP.36.5954/meta.

  26. 26.

    R.A. De Souza, A.H.H. Ramadan, Ionic conduction in the SrTiO3|YSZ|SrTiO3 heterostructure. Phys. Chem. Chem. Phys. 15, 4505–4509 (2013). https://doi.org/10.1039/C3CP44399J

    Article  Google Scholar 

  27. 27.

    R.A. Maier, C.A. Randall, Low-temperature ionic conductivity of an acceptor-doped perovskite: I. Impedance of single-crystal SrTiO3. J. Am. Ceram. Soc. 99, 3350–3359 (2016). https://doi.org/10.1111/jace.14348

    CAS  Article  Google Scholar 

  28. 28.

    R.A. Maier, C.A. Randall, Low temperature ionic conductivity of an acceptor-doped perovskite: II. Impedance of single-crystal BaTiO3. J. Am. Ceram. Soc. 99, 3360–3366 (2016). https://doi.org/10.1111/jace.14347

    CAS  Article  Google Scholar 

  29. 29.

    S. Taibl, G. Fafilek, J. Fleig, Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: inductive loops as a trace of ion motion. Nanoscale 8, 13954–13966 (2016). https://doi.org/10.1039/C6NR00814C

    CAS  Article  Google Scholar 

Download references

Acknowledgements

D. Lee thanks Soojeong Jo at Samsung Electro-Mechanics for the MLCC samples used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong Ho Lee.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Song, K., Jung, D. et al. Characterizing electrical breakdowns upon reoxidation atmosphere for reliable multilayer ceramic capacitors. J. Korean Ceram. Soc. 58, 445–451 (2021). https://doi.org/10.1007/s43207-021-00121-9

Download citation

Keywords

  • Multilayer ceramic capacitors
  • BaTiO3
  • Ni electrode
  • Space charge layer
  • Electrical breakdown