Antimicrobial ceramic hybrid films for keep-freshness packaging with fluorinated illite particles

Abstract

This work reports the preparation of a ceramic hybrid film for keep-freshness with enhanced oxygen and moisture permeability, and antimicrobial properties using fluorine-coated illite (F-illite) and low-density polyethylene (LDPE) resin. Before the film was manufactured, a master batch of F-illite and LDPE was prepared through an extruder, and a large amount of LDPE resin was mixed to produce a film containing 4wt% F-illite. The amount and dispersity of the F-illite in the LDPE matrix were confirmed by TGA, wide-angle XRD and SEM analysis. As a result, the F-illite hybrid films had an oxygen transmission rate (OTR) of 13,430 mL/m2۰day), which is higher than 10,309 mL/m2۰day of the general LDPE film. Moreover, the water vapor transmission rate (WVTR) was 20.13 g/m2, which was higher than that of the general LDPE film 16.13 g/m2·day. In addition, the F-illite hybrid film showed more than 99% antibacterial activity against S. aureus.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. 1.

    J. Qu, X. Zhao, Y. Liang et al., Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem. Eng. J. 362, 548–560 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    M.R.E. Santos, A.C. Fonseca, P.V. Mendonca et al., Recent developments in antimicrobial polymers: a review. Mater. 9, 599 (2016)

    Article  Google Scholar 

  3. 3.

    F. Siedenbiedel, J.C. Tiller, Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polym. 4, 46–71 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    S. Ganguly, P. Das, M. Bose et al., Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrason Sonochem. 39, 577–588 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    V.V. Thekkae Padil, M. Cernik, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 8, 889–898 (2013)

    Google Scholar 

  6. 6.

    B. Ouattara, R.E. Simard, G. Piette et al., Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int. J. Food Microbiol. 62, 139–148 (2000)

    CAS  Article  Google Scholar 

  7. 7.

    P. Appendini, J.H. Hotchkiss, Review of antimicrobial food packaging. Innovat. Food Sci. Emerg. 3, 113–126 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    M. Aziz, S. Karboune, Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: a review. Crit. Rev. Food Sci. Nutr. 58, 486–511 (2018)

    CAS  Google Scholar 

  9. 9.

    K.S. Huang, C.H. Yang, S.L. Huang et al., Recent advances in antimicrobial polymers: a mini-review. Int. J. Mol. Sci. 17, 1578 (2016)

    Article  Google Scholar 

  10. 10.

    P. Garcia, B. Martinez, J.M. Obeso et al., Bacteriophages and their application in food safety. Lett. Appl. Microbiol. 47, 479–485 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    P.K. Dutta, S. Tripathi, G.K. Mehrotra et al., Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 114, 1173–1182 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    M.M. Tajkarimi, S.A. Ibrahim, D.O. Cliver, Antimicrobial herb and spice compounds in food. Food Control 21, 1199–1218 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    X. Zhang, G. Xiao, Y. Wang et al., Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polym. 169, 101–107 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    B. Niu, Z. Yan, P. Shao et al., Encapsulation of cinnamon essential oil for active food packaging film with synergistic antimicrobial activity. Nanomater. 8, 598 (2018)

    Article  Google Scholar 

  15. 15.

    A.M. Youssef, Polymer nanocomposites as a new trend for packaging applications. Polym. Plast. Technol. Eng. 52, 635–660 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    L.A. Savas, M. Hancer, Montmorillonite reinforced polymer nanocomposite antibacterial film. Appl. Clay. Sci. 108, 40–44 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    J. Seo, G. Jeon, E.S. Jang et al., Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. J. Appl. Polym. Sci. 122, 1101–1108 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    P. Mujeeb Rahman, V.M. Abdul Mujeeb, K. Muraleedharan et al., Chitosan/nano ZnO composite films: Enhanced mechanical, antimicrobial and dielectric properties. Arab. J. Chem. 11, 120–127 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    H. Uno, K. Tamura, H. Yamada et al., Preparation and mechanical properties of exfoliated mica-polyamide 6 nanocomposites using sericite mica. Appl. Clay. Sci. 46, 81–87 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    J.M. Garces, D.J. Moll, J. Bicerano et al., Polymeric nanocomposites for automotive applications. Adv. Mater. 12, 1835–1839 (2000)

    CAS  Article  Google Scholar 

  21. 21.

    X. Gu, L.J. Evans, Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto fithian illite. J Coll. Interface Sci. 307, 317–325 (2007)

    CAS  Article  Google Scholar 

  22. 22.

    C.C. Otto, J. Kilbourne, S.E. Haydel, Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice. J. Med. Microbiol. 65, 19–27 (2016)

    Article  Google Scholar 

  23. 23.

    A. Romero, I. Ares, E. Ramos et al., Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: protective effect of illite mineral clay. Toxicol. 353–354, 21–33 (2016)

    Article  Google Scholar 

  24. 24.

    L. Chong, E.M. Myshakin, The effect of residual water content on preferential adsorption in carbon dioxide–methane–illite clay minerals: a molecular simulation study. Fluid Phase Equilib 504, 112333 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    J. Kim, E. Jeong, Y.S. Lee, Direct fluorination as a novel organophilic modification method for the preparation of Illite/polypropylene nanocomposites. J. Mater. Sci. 47, 1046–1053 (2011)

    Article  Google Scholar 

  26. 26.

    D.M. Seong, H. Lee, J. Kim, J.H. Chang, High oxygen and water-vapor transmission rate and in vitro cytotoxicity assessment with illite-polyethylene packaging films. Materials. 13, 2382–2392 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    P. Dubois, M. Alexandre, F. Hindryckx et al., Polyolefin-based composites by polymerization-filling technique. J. Macromol. Sci. Polym. Rev. 38, 511–565 (1998)

    Article  Google Scholar 

  28. 28.

    B. Lepoittevin, N. Pantoustier, M. Devalckenaere et al., Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: a masterbatch process. Polym. 44, 2033–2040 (2003)

    CAS  Article  Google Scholar 

  29. 29.

    T. Húlan, A. Trník, I.J. Medveď, Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J. Therm. Anal. Calorim. 127, 291–298 (2016)

    Article  Google Scholar 

  30. 30.

    C. Shimasaki, N. Watanabe, K. Fukushima et al., Effect of the fire-retardant, melamine, on the combustion and the thermal decomposition of polyamide-6, polypropylene and low-density polyethylene. Polym. Degrad. Stab. 58, 171–180 (1997)

    CAS  Article  Google Scholar 

  31. 31.

    M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)

    Article  Google Scholar 

  32. 32.

    R.E. Marquis, S.A. Clock, M. Mota-Meira, Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 26, 493–510 (2003)

    CAS  Article  Google Scholar 

  33. 33.

    V. Stanić, S. Dimitrijević, D.G. Antonović et al., Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects. Appl. Surf. Sci. 290, 346–352 (2014)

    Article  Google Scholar 

  34. 34.

    J.Z. Liang, Estimation of tensile strength of inorganic plate-like particulate reinforced polymer composites. Polym. Eng. Sci. 53, 1823–1827 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    A. Jain, L.S. Duvvuri, S. Farah, Antimicrobial polymers. Adv Healthc. Mater. 3, 1969–1985 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    D. Field, M. Begley, P.M. O’Connor, Bioengineered nisin a derivative with enhanced activity against both gram positive and gram negative pathogens. PLoS One 7, e46884 (2012)

    CAS  Article  Google Scholar 

  37. 37.

    T.J. Silhavy, D. Kahne, S. Walker, The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5), a000414 (2010)

    Article  Google Scholar 

  38. 38.

    J. Günther, W. Petzl, I. Bauer, S. Ponsuksili, H. Zerbe, H.J. Schuberth, R.M. Brunner, H.M. Seyfert, Differentiating Staphylococcus aureus from Escherichia coli mastitis: S. aureus triggers unbalanced immune-dampening and host cell invasion immediately after udder infection. Sci Rep 7, 4811 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the R&D program funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) and part of the Industry Core Technology Development Program funded by the Korea Evaluation Institute of Industrial Technology (KEIT) [10063291].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeong Ho Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seong, D.M., Chang, J.H. Antimicrobial ceramic hybrid films for keep-freshness packaging with fluorinated illite particles. J. Korean Ceram. Soc. 58, 430–436 (2021). https://doi.org/10.1007/s43207-021-00119-3

Download citation

Keywords

  • Antimicrobial
  • Fluorine-coated illite
  • Film
  • Oxygen transmission rate
  • Water vapor transmission rate